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B Introduction to state observers

Motivation behind the design of an observer

Given a plant P represented by a generic Multi-Input
Multi-Output (MIMO) discrete-time state space

representation:
Inputs Measurements
> P I >
Uy, Yk Yi = G (Xk, U, ty)

One can be interested in the reconstruction of the internal state
x; of the plant for:
« Full-state feedback control
* Infer x; not directly measured in y,
« Example: infer a kinetic profile from integral values of the
profiles along the lines of sight of the diagnostic
» Filter out/fuse different diagnostic data, synthetized in x;

Many techniques can be devised for such task:
* Open-loop model-based estimation

* Luenberger observer

« Kalman Filter (or Extended Kalman Filter), ...

Xi+1 = fr(xy, uy, t;) State evolution equation

Measurement equation

w

Francesco Pastore



EPFL  Motivation behind the design of an observer

N

Francesco Pastore

O How can one compute X, (estimate of x,)? Plant

Known data:

* Input u : {xk+1 = [ e te) |

* Measurements y,, Uy Yie = Gre(Xic, e, L) Vi

Unknown data:
* X, initial condition of x;,

O By adopting a mathematical model of the

 If the dynamics is known, one can directly adopt I {xfﬂ_: fkgxk'uk' 79
(fr, 95 for the computation of x,,. Yi = 9k (Xk, uy, ty)

. Otherwise, one can model the system P with (f, §) Rier1 = fr (R g, ty)
where f, =~ f, and G, = gy. Vi = G (X, Uy, ty)

B Introduction to state observers
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B Introduction to state observers

Open-loop model-based state estimation

Before starting with computations, let’s

make the following hypothesis: Al
* The dynamics of the Is known.
" {xk+1 = fre(xpe, Uy ti)
_ Uy Vi = Gk Xk, Ug, Ty
Given x, and u;, one can use the
Observer block to estimate:
» the state x;,
- the synthetic measurements y,. Observer
Uy
H P ~
{xk+1 = [ (Xp, g, ty)
— o (Vi = g Kk, Uy, )
X0

Yk

v

v

u

Francesco Pastore
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B Introduction to state observers

Open-loop estimation of the motion of a vehicle

Example: 1D motion of a point-wise vehicle

Continuous time state-
space representation:

Propulsion
force
U, = Fk

Vehicle

bl =10 of o] * [1/m] F®

Exponentiall] matrix discretization

Measurements
not treated yet

v
v

Discrete time state-space
representation, with sampling
time At (constant-sampling):

[rk+1] [1 At ] [AtZ/Zm]

Vk+1 At/m

(<]

Francesco Pastore
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B Introduction to state observers

Open-loop model-based state estimation:
mismatch on initial conditions

Effect of mismatch between X, and x,:

0 Vehicle
Mismatch on initial condition for the Xg = 0]
velocity: . ) A ) ] i rk+1 1 At ] [AtZ/Zm
° — 0 = Y. = 0 = F vk+1 At/
% =[] = o] % =[50 = [1 :
m=1, F, =1-step(t).
Observer
Fy
—t
[Tk 1] [1 At Lr],;] [Aztﬁlm]Fk —
0 e
%, = X
T =

Initial condition
guess

Francesco Pastore ~N
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B Introduction to state observers

Open-loop model-based state estimation:
mismatch on initial conditions

Effect of mismatch between X, and x,:

2
At /Zm] F,

[Tk+1] _ [1 At] [Tk] N
Vk+1 0 111Vk At/m

Mismatch on initial condition for the
velocity:

+x0= o] = o] =o=[5] =[]

- m=1,F,=1-step(t).

« 1) Offset on velocity estimate

« 2) Estimation error on the
position drifts over time

r[m]

v [m/s]

B0

20

10

=2 (=] = (53] ]
T T T

Francesco Pastore 0
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B Introduction to state observers

Open-loop model-based state estimation:
effect of disturbances on the input

Effect of disturbance on the input,

additive standard Gaussian noise dy Vehicle
d;, = N(0,1) on Force input.

+
_ _ > rk+1] [1 At][ ] IAtz/Zml
From the observer point of view, the F, |+ Ve T 100 1 At/m
input noise is unknown and doesn’t
enter in the model inputs.
Observer
Fy
-
)= %1 G+
0 Fi

Francesco Pastore ©
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B Introduction to state observers

Motivation behind the design of an observer

Effect of disturbance on the input,

additive standard Gaussian noise
d; = N(0,1) on Force input:

— . Xo|l [0
Same initial condition [vol = [1]

* No external forcing term F;, = 0.

« State estimation maximum error
(in 100 s):
« ~10% on position.
« ~20% on velocity.

120

100

80

riml

40

20F

0

1.1

v [mfs]
=
W

60|

—a=0 mfs.2
—a = N{0,1) m/s°
0 10 20 30 40 50 60 70 80 90 100
t[s]
M
—a = N{0,1) m/s° H
0 10 20 30 40 50 60 70 80 90 100
t[s]

—_—a =0 m/s?
— 5 = N(O,1) m/s>

0 10 20 30 40 50 60 70 80 90 100
t[s]

[y
o

Francesco Pastore



=PrL

B Introduction to state observers

system

For the next derivations, let’'s consider the
additional hypothesis:

« The plant can be represented by a
linear time-independent discrete
system (LTI):

Xps1 = Axp + Buy
Yi = ka + Duk

= Xy, State vector, size [n,1]
= Uy, inputs vector, size [r,1]

= vy,., measurements vector, size[m,1]

= A, system/state matrix, size [n,n]
= B, input matrix, size [n,r]
= (, output matrix, size [m,n]
= D, transition matrix, size [m,r]

Plant

\

U {

Xk+1 — Axk —+ Buk

Open-loop state estimation: linear time-independent

Yi = ka + Duk

Observer

Yk

v

/x\k+1 = Air\k —+ Buk
yk = C’)Zk + Duk

v

v

[y
[y

Francesco Pastore



EPFL Weaknesses of open-loop state estimation

Study of the estimation error:

er = X — Xy,
Innovation residual:
Zy = Yr — Vi

Plant state system:
xk+1 = Axk + Buk
Vi = Cx; + Du,,

S

State estimation system:

.(X'\k+1 = A/x\k + Buk
yk = C/x\k + Duk

B Introduction to state observers @
K-—A—N\

Estimation error system:

e = Ae
/lf+1 R k
Z, = Cek

The state estimation evolves over

J
O

time solely with the system

dynamics represented by A:

 If the plant is unstable, the
estimation error will diverge
over time.

« Enforce the stability condition
by manipulating the poles of the
estimation error equation.

Jjimz
z-plane

LU bl Unstable
i ~.  Unit circl
Stabl
-1 0 /1 Re
Stabl
Unstable | Unstable

Automatic Control Systems, 10th Edition.
Dr. Farid Golnaraghi, Dr. Benjamin, C. Kuo,
2017 McGraw-Hill Education.

[y
N
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B Introduction to state observers

Example: 1D motion of a point-wise vehicle

Estimation error system:

€r+1 = A€y
2]{ == Cék

Unstable

Discrete state-space [ sa

jlmz%

Weaknesses of open-loop state estimation

z-plane

representation, with . ;;
sampling time At:

[xk+1] [1 At ] [AtZ/Zm] . [1 At

Vk+1 At/m

[ L)

Ay, =eig(d) = [11]

Marginally stable system,
open-loop state estimation fails

[y
w

Francesco Pastore
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=PrL  Closing the loop: state observer and measurements

Francesco Pastore

What are we missing?
* We are just currently using the info contained in the inputs u,...

« Measurements y, coming from the plant represent arich
information!

« Additional input term to the state estimation equation that encorporates the
difference between:
* The plant measurements y;,
* The synthetic measurements y,

X1 = AXy + Buy + LYk — Yi)
yk = Cic\k + Duk

B Introduction to state observers
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ePFL  Closing the loop: state observer and measurements

Plant

Francesco Pastore

* Feedback loop to take into account
the innovation residual:

Zy=Yk — Yk

v

v

Xk+1 — Axk F Buk
Y = ka aF Duk yk

* State observers: integration of
measurements with model
prediction in a self-consistent way.

Observer

=)
=

v

5C\k+1 = A5C\k + Buk + Lkﬁk
yk = Cﬁk + Duk

\\
&)
RA

Observer matrix

+ 4
— Ly I' ~ O‘_‘
Zy

Innovation residual

B Introduction to state observers
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EPFL  Measurements: example of the 1D motion of a vehicle 1

Continuous state-space
representation:

Francesco Pastore

Example: 1D motion of a point-wise vehicle

Position (via GPS) [r] _[o1 [r] +[ 0 ]F
+ Position (via =
Propulsion » Acceleration v 0 0l 1/m
force e (via accelerometer)
> Vehicle T o 1 0] rr 0 « Position (via GPS)
K K Yk y 0 O]y +[1/m]F  Acceleration

(via accelerometer)

Discrete state-space

representation, with sampling
time At:
Tk+1 At2/2m]

L] Vg, Qg 1 0|7 0
Fi > m Yk = [0 O] [vk] T ll/m] Fi
| _
| |

0 Tk  Tkmeasured r

\

B Introduction to state observers
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Study of the estimation error:

Closed-loop state estimation

er = X — Xy,
Zy =YV — Yk

Plant state system:

of

Xk+1 — Axk -+ Buk
Vi = Cx; + Du,,

State estimation system:

@

B Introduction to state observers

.(X'\k+1 = A/x\k + Buk + Lﬁk
yk = C/x\k + Duk

O-@

Estimation error system:

{ek+1 = (A -LC)ey

2]( — Cék

* Matrix L has size [n,m].

* Bytuningthe coefficients of L,
one can stabilize the estimation
error state equation.

* The coefficients of L will
determine the dynamical
response of &,.

Important remark:
This procedure only works if the pair
(A, C) is observable.

Jjimz
z-plane

Unstable T Unstable
// \\\ Unit circle
Stable /
-1 0 /1 Rez
\ Stable
Unstable | Unstable

Automatic Control Systems, 10th Edition.
Dr. Farid Golnaraghi, Dr. Benjamin, C. Kuo,
2017 McGraw-Hill Education.
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EPFL  Concept of observability

Francesco Pastore

Observability: Observability matrix:
« Find the initial conditions x, of a _
given system P from: C
« measurements {y,, ¥1, ..., Yn} o0=| ¢4
e InpUtS {uo,ul, ...,uN} v
« system (A,B,C,D). A

. The manipulation of the poles is Where n is the size of the state vector.

not only connected to the values

of L, but also to the structure of * The matrix O has size [mn,n]

(rectangular matrix for MO systems).

(4,0).
. _ « The system P is observable if
Estimation error equation: rank(0) = n.
x+1 = (A—LC)g
2]( — Cék

Derivation in backup slides...

B Introduction to state observers
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B Introduction to state observers

Observability: example of the 1D motion of a vehicle

Discrete state-space representation,
with sampling time At:

[rk+1_ _[1 At ] Atz/Zm
vier] ~ 0 1) At/m

» Position (via GPS)

(1 0] ["%] 0
Yy = 0 0] [Uk_ T ll/m] Fr + Acceleration

(via accelerometer)

Observability matrix:

0 = [ ] if the rank(0) = 2, the
CA system is observable.

1
_[c1_|o
o=|cl=
0

Since At # 0, the matrix O has rank 2, thus the
system is observable.

Remark:
 The acceleration measurement doesn’t
contribute to the observability of the system!

Conclusion:

» Well-thought design of the measuring system
(C matrix) enables the reconstruction of the
state x;,.

« Many measurements can ensure redundancy
in the state observation, in case of failure.

Let’s try to apply the previous concepts to
design a closed-loop observer matrix L, for the
vehicle example.

[y
©

Francesco Pastore
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B Introduction to state observers

Tuning of the observer coefficients

What determines the choice in the selection of the matrix coefficients L?
« Dynamical performances of the observer
 Trustin the model/measurements

There are many techniques to tune the observer gains:
« Luenberger observer:

Static gain for L.

« Kalman Filter:

Noise modeling contained in the formulation of the problem (stochastic
approach).
Optimal state estimate in the least-squares sense for linear systems.

Can be easily extended for nonlinear systems (Extended Kalman Filter)

N
o

Francesco Pastore



ePFL  Kalman filter: the optimal estimator for linear "
systems
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ePFL  Kalman filter: the optimal estimator for linear 2
systems

Francesco Pastore

- Bayesian filter used as a systematic statistical framework to assimilate
experimental data into simulations/RT models.

- First practical use in the aerospace applications, during the Apollo program.

= It enabled real-time spacecraft navigation by optimally fusing noisy sensor
data (e.g., from radar and inertial systems) to estimate position and velocity.

B Introduction to state observers

Apollo CSM Endeavour in lunar orbit during Apollo 15
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B Introduction to state observers

Kalman filter: the optimal estimator for linear
systems

Definition: covariance matrix entry for two elements i and j of a stochastic vector x is defined as:

var(x,) o cov(xq,XyN)

cov(x;,x;) = E ((xl — E(x;)) (xj — E(x]))) E(xxT) =

cov(xy,xy) -+ var(xy)

- The idea: associate a zero-mean Gaussian white noise to
*  Predictive model equations: wy, N(0,a,)
. Measurements equations: vy, N(0, a,)

Plant state equation:
{xk+1 = Axk + Buk + Wi

Vi = Cx; + Duy, + vy,

- Associate covariance matrices to wj, and vy,:
*  Process covariance matrix: Qx = E(wywy)
. Measurement covariance matrix: R, = E (v, v5)

N
w

Francesco Pastore
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B Introduction to state observers

Kalman filter: the optimal estimator for linear
systems

Algorithm formulation (formulation extended for time-varying systems):

Predictive/Prior step:
’ik+1|k = Ak/JZMk + Bruy, Prior error: ék+1|k = /x\k+1|k — Xk
Vi = CiXgi + Dy

Correction/Posterior step:

Xi+1)ke+1 = Xk+1k T L (Ve — Vi) Posterior error: @yqjx+1 = Xg+1jk+1 — Xk

Computation of the Kalman filter gain:

Concept behind: find L, that minimizes the trace of the posterior covariance matrix

Pryijr+r = E(€xt1ik+1€k+1)k+1)
This process naturally incorporates the covariance matrices Q, and R,

L, retains how much weight has to be put between model and measures:
 Low ||Qk||/ ||Rk]||: more trust in the model
*  High ||Qk||/ ||Rk||: more trust in the measurements

2

N

Francesco Pastore
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RAPDENS control-oriented model
Plasma electron density

Computation of the Kalman filter gain

« 1) Prediction error covariance matrix » 4) Posterior error covariance matrix
E(ék+1|ké£+1|k): E(ék+1|k+1é£+1|k+1):
Pk+1|k - AkPk|kA’£ + Qk Pk+1|k+1 — (I _ Lka)Pk+1|k

- 2) Innovation residual covariance matrix * 5) Repeat steps 1) to 4) before the
E(2,27): correction step, setting:

-1

S, = CkPk+1|kCI’£ + Ry Pk+1|k+1 Z_)Pk|k

« 3) Extended Kalman filter gain
min 67 (Pegjics):

Ly = PryxCi St

N
(6]

Francesco Pastore



=PrL

B Introduction to state observers

Kalman filter: example of the 1D motion of a vehicle

Let’'s adopt the Kalman filter to tackle the issues related with:
« The mismatching initial condition
* The disturbance in the input force

Graphical representation of the Gaussian distributions for:
* Measurement position 1y ;meqsureqd, COVariance Ry
* Predicted position estimate 7, q;, covariance Py qx

* Posterior position estimate fj.,q|x+1, COvVariance Py q k41

Tk+1|k+1

0 Tk+1|k Tk Tk, measured

N
[<2)

Francesco Pastore
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B Introduction to state observers

Closed-loop model-based state estimation:

mismatch on initial conditions

Effect of mismatch between x, and x:

Mismatch on initial condition for the
velocity:

. _[r]_[0] ~ _[fol_ 10
%= [ug] = o] %= [5;] =1
e m=1,F, =1"-step(t).

 Introduction of noisy
measurement on position:

Yr = Tplant + N(0,1)

» Let’s start with zero gain to the
observer matrix: L, = 0

« Exactly same behavior
recovered, Observer behaves as
the open loop Model

v [m/s]

10

Observer
— — — Model

L |— — —Plant

10

| |— — —Plant

= P F= s3] oo
T T

Observer
— — — Model

10

N
~

Francesco Pastore
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B Introduction to state observers

Closed-loop model-based state estimation:

mismatch on initial conditions

Effect of mismatch between X, and x,:

2 [1

0

* Re=or|y 4| oa=1
° Q :GZ 1 O’ 0-2:10—2
k Qlo 1 Q

» Successful convergence of the

posterior error estimate to zero

« Still a bit noisy, let’s try to filter it
out by playing with o5

v [m/s]

10t

Observer
— — — Model

+ |[— — —Plant

r |— — —Plant

Observer
— — — Model

= kJ F= (=N =]
T T T

N
¢

Francesco Pastore
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B Introduction to state observers

Closed-loop model-based state estimation:

mismatch on initial conditions

Effect of mismatch between x, and x:

1

[ ] R o 2
k OR _O
1

[ ] o 2
Qk GQ _O

0
1.
0
1.

oa=1

Géz 10~°

» Successful convergence of the
posterior error estimate to zero

» Noise completely filtered out!

v [m/s]

10

Observer
— — — Model

L |— — —Plant

| |— — —Plant

Observer
— — — Model

= P F= s3] oo
T T T

N
©

Francesco Pastore
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B Introduction to state observers

Closed-loop model-based state estimation:
mismatch on initial conditions

Effect of mismatch between x, and x:

70

'1 O' Measurement
° Rk — 0}22 O 1 , 012?: 1 60 | Observer
c Qu=c3|y Il oh=10"

rimj

» Successful convergence of the
posterior error estimate to zero

» Noise completely filtered out!

-10

w
o

Francesco Pastore
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B Introduction to state observers

Closed-loop model-based state estimation:
mismatch on initial conditions + input disturbance

Effect of mismatch between x, and

X+ White noise input disturbance:

2 [1 0]

® Rk = GR _O 1-
P V)
Qk - GQ _O 1_

, o5=1

, Gé: 10~°

Mismatch on initial condition for the

velocity:

+ x =[] = o] % =[] =[]

® m=1,Fk+dk

=0+ 3N(0,1).

* Noisy measurement on position:
Yr = Tplant + N(0,1)

10

v [mfs]

[
L T =L I = -
T T

| |— — — Model
Ll |[— — —Plant

Observer

e — A

10

11111

— — — Model
— — —Plant

Observer

e
”#“"m“%r‘flvw"'\ﬂﬂ' A

P

2 - & 2

10

w
[y

Francesco Pastore
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B Introduction to state observers

Effect of mismatch between x, and

Closed-loop model-based state estimation:
mismatch on initial conditions + input disturbance

X+ White noise input disturbance:

.
Rk:G}ZQ 0 1 , O'}ZQ:].
O=ch|, 7 oh=10"

Very good tracking of the plant
dynamics, even if affected by
noises.

Faster response enabled by

tuning the values of R, and Q.

10

v [mfs]

[
L T =L I = -
T T

| |— — — Model
Ll |[— — —Plant

Observer

e — A

10

11111

— — — Model
— — —Plant

Observer

e
”#“"m“%r‘flvw"'\ﬂﬂ' A

P

2 - & 2

10

w
N
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« Motivation and applications

« RAPDENS model presentation
* Results on local density control
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RAPDENS control-oriented model

Plasma electron density

TCV diagnostics for RT density measurement:

FIR

« Composed of 14 laser chords (A = 184.3 um)
at different radial positions, fsgmpie = 20 kHz.

 Phase delay of the 14 FIRs w.r.t. a reference
laser outside the plasma:

Ap = cpiR fLC ne(p(2), ty )dz
« A¢ can span different 2r radians, called
fringes.

« Central chord used routinely used for density
feedback

TCV #80525 @ 1 s

ST
—

R IITH1] e E—

y
7

|
=
T/
A7

w
H

FIR chords
FIR feedback

Francesco Pastore
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RAPDENS control-oriented model
Plasma electron density

FIR

Phase delay of the 14 FIRs w.r.t. a reference laser
outside the plasma: Ay = cpig [, ne(p(2),ty )dz
Ag¢ can span different 2z radians, called fringes.

Various issues (high density plasmas and/or low
SNR) lead to counting errors: fringe jumps.

Integer errors of 2m lead to density errors of
magnitude § =~ 10° m~2

TCV diagnostics for RT density measurement:

FIR signal normalized and shifted:

Mgl s
My,W :

Corrected
Corrupted | |

(a)

T. C. Blanken et al., Fusion Engineering and Design 126,
doi:10.1016/j.fusengdes.2017.11.006., 2018

W
(5]

Francesco Pastore



ePFL  TCV diagnostics for RT density measurement:
Thomson Scattering (TS)

TCV #73631 @ 1.2 s

« Main diagnostic for the estimation of the spatial
profiles of n, and T, on TCV.

 Measurements at 117 positions along a vertical
laser beam (R=0.9 m), covering also divertor
region.

« Three lasers firing at a frequency of 20 Hz,
Independent fire mode:

« Equispaced in time: 60 Hz

« Burst-mode: interleave of 1 ms for three
lasers, for fast phenomena in plasma core or
SOL.

Lines of sight of
TS diagnostic

height [m]

radius [m]

RAPDENS control-oriented model

Plasma electron density

w
(<]

Francesco Pastore
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RAPDENS control-oriented model

Plasma electron density

TCV diagnostics for RT density measurement:
Thomson Scattering (TS)

« Combining TS data with the
real time equilibrium
reconstruction enables to:

 Distinguish between core
plasma and SOL density

* Provide detailed spatial
info of density

height [m]

TS point
FIR #1
FIR #6
FIR #14

TCV#BOTI7T @15

T ¥
S g rrrrrr G

==
IR \NNNNNNN Sy ST R

3 L -
& . L Y

s

06 0.8 1
radius [m]

Z |l

0.8

0.6 ¢

0.4 ¢

0.2

02}

04t

0.6 ¢

0.8

37
g
S
@
o
e
—
RAPDENS
— RT-TS
0 z | B 8 10
-3 14
n, [ m™] =110
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RAPDENS control-oriented model
Plasma electron density

Motivation: real-time estimation and control of ne
profile

Real-time estimation of plasma electron density profile enables:

» Monitoring of plasma density limits in real time for disruption
avoidance and integrated control [1].

= Local control of the density at p = P¢4r-ger, €.9. ON rational
surfaces below cutoff for suppression of NTMs [2].

» Real-time Kinetic Equilibrium Reconstruction [3] for self-
consistent kinetic profiles + equilibrium.

[1] A. Pau et al., IAEA TM on Disruptions, Cadarache ITER, 2020.
[2] M. Kong et al., Plasma Phys. Control. Fusion 64 044008, doi: 10.1088/1361-6587/ac48be, 2022.
[3] F. Carpanese et al., Nucl. Fusion 60 066020, doi:10.1088/1741-4326/ab81ac, 2020.

w
(¢

Francesco Pastore
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RAPDENS control-oriented model
Plasma electron density

Motivation: real-time estimation and control of ne

profile

Adoption of model-based observers:

Merge different diagnostics for
improved reconstruction of n,.

Decoupling between the diagnostics
and the controllers.

Avoiding propagation of diagnostic
faults

w
©

Francesco Pastore

Actuators

Feedforward +
Feedback
signal

Tokamak

RT- diagnostics

Actuators

Reconstructed
plasma state

readback

Reference
feedforward

Observers \
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RAPDENS control-oriented model
Plasma electron density

Motivation: real-time estimation and control of ne

profile

Adoption of model-based observers:

Merge different diagnostics for
improved reconstruction of n,.

Decoupling between the diagnostics
and the controllers.

Avoiding propagation of diagnostic
faults

Feedforward +
Feedback
signal

Actuators

Tokamak

RT- diagnostics

Actuators

readback

Reconstructed 5
plasma state )
Observers

Reference
feedforward

Shot 83394:
.2 1019 FIR chord #6
~
IE 2
-
= 0] RAPDENS FIR digitally filtered |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

t[s]

16

H
o
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ePFL  RAPDENS multirate ne profile observer
(RT-FIR+RT-TS)

- Multirate electron density observer [9] at 1 kHz, based on Extended Kalman Filter algorithm.

S TCV RT- diagnostics . Inputs to the observer:
Gas valve signal = RT-TS: 60 Hz.
G I - a . . . .
SCD Sas vave e RT-FIR digitally filtered:
Scattering PD 10 kHz.
> ’ FIR
. . = Plasma confinement state
agnetics
¢ [N I [10] (L/H-mode), 1 kHz.
SAMONE [11] RAPDENS detector | = Magnetic equilibrium
observer ! RT-LIUQE, 1 kHz.
Density ” ’ FIR digital |_ RT- -  SAMONE actuator manager [11]
controller 1 (p) filter - LIUQE '
= Pl density controller,
3 W(R,2), 0 (),
5 3 Go(p),Gi(p) feedback to gas valve.
Reference
feedforward

[9] F. Pastore etal., Fus.Eng.Desvol.192, p.113615, doi:10.1016/j.fusengdes.2023.113615, 2023.
[10] G. Marceca et al., 47th EPS Conference on Plasma Physics: virtual conference, June 21-25.
[11] N.M.T. Vu et al., IEEE Transactions On Nuclear Science 68, doi:10.1109/TNS.2021.3084410, 2021.

RAPDENS control-oriented model

Plasma electron density

iy
fury
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RAPDENS multirate observer scheme

LDH state

detector RT-LIUQE

RT- diagnostics

Thomson
Scattering

FIR (digitally filtered)

]

|
GU,k(p.‘c)rGl.k(pR) Vi (R, 2)
Cink

Vp,k(pk) rIp,k: Cla k (I’,k(ll»'k):Domainp,k

l }

RAPDENS control-oriented model
Plasma electron density

1S available?

hFIR,k
hk - hFIRk hk .

hTS,k

H — g
| Diagnostics FIRk K|k —
| Model ; >

P 1#?

|

Diagnostic -
faults detect [<«— 571;?;3.;\:_0

u . - Rt
k Density Predictive k|k—1
Model Hrcs
' TS
= Pellets o
* NBI -
X—1|k—-1
VTsk
z-1
TS available?
r 3
—F Mok (Px) . Z
] {>’7— fk|k_0:7 Kalman Gain |«—— “kcorr
Matrix Ly, <«
Post r = ok_channels,,
processing Xk |k

REIR |k

and correct -

H
N
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RAPDENS control-oriented model

Plasma electron density

Example: H-to-L back transition fora TCV shot

Transient H-mode plasma with strong off-axis ECCD + NBI-1.
Back-transition of n, reconstructed in detail at 1 kHz.

Reconstructed FIR traces 77330
h " FIR#3,R=1.001m

FIR,meas

- hFIR;RAPDENS

h . h

15 FIR,corr FIR, TS |

FIR #7,R=0.876m

I SOL density non-negligible after
back-transition

FIR #9,R=0.829m

time [s]

»
w

Francesco Pastore
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=PrL Example: H-to-L back transition fora TCV shot

« Transient H-mode plasma with strong off-axis ECCD + NBI-1.
 Back-transition from H-to-L reconstructed at 1 kHz.

Timetraces_77330

6
T s n(p=0.11)
— , | |——RAPDENS i
@ 4+ : .
e il el
2 ii Timeslices_77330
22r H n_(p.t=1s) n_(p.t=1.001s)
ii T T T T T T T T T
1 6 L — 4 6 L — i
o ‘ u TS t=0.9843 s r TS t=1.0003 s
| i n (p =051) : \
1 5 51N
% 4+ .
c»E
< . — 4| — 4|
a2t i © ™
= 11
= i e =
0 1] @ 3 @ 3t
6 .
il n_(p=091) = 2
— 1 T2t 2t
§ a4t :: |
E 92E m 1 1
e] o 0 r
[} - 2
E > — - =
.g .ﬁ il
55 : ii 0 - : : - ‘ 0 : - : : -
55 0 05 1 15 0 02 04 06 08 1 0 02 04 06 08 1
= C -
c o time [s]
83 Pior Ptor
0o
Z o
T
o wn
<
o

S
S
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ePFL Example: H-to-L back transition for a TCV shot

RAPDENS control-oriented model

Plasma electron density

Timeslices 77330
n_(p.t=0.985s) v [m/s] n_(p.t= 15) n (p t=1. 0015) n_(p,t=1.002s)

6 ! 6 ' I TS
TSt O9843<

TS t 1 0003 < RAPDENS corr. w/ vrg

RAPDENS corr. w/o vpg
= = = RAPDENS pred. w/ vpg

= == = RAPDENS pred. w/o vrg
Splines decomposition

Ul

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

’Otor ptor ptor ptor

« Estimated v, exhibits stronger gradient at the edge, improving its reconstruction in the
predictive step (black dashed profile).

« The EKF deployed algorithm relies on low Ry rs covariance, strong correction step (solid
profile).

* n.(p,t = 1.001 s) coherent with TS profile, degradation of the density gradient captured
correctly.

» Profile shape propagated for the time t=1.002 s with only FIR data.

»
u
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RAPDENS control-oriented model
Plasma electron density

ECH directed in the plasma core,
control of ne(rho=0) to ensure
stable operation below cut-off
(X2, 419 m"-3).

Lack of the pump-out effect
noticeable as ECH is turned off at
t=1.50 s.

Full absorption of ECH power
achieved (post-shot TORAY).

Local density control for ECH discharges

46
o
S
<
o
(@]
?
&
; Shot 82913: control of ne central, ECH core heating x }:E- =t g
D-'?_' e— ceniral n_ central, reference I n, central TS
=
2 4 1 _
o &
- ECH turned off, *®,
= - =
g, lack of pump-out | 5 o
= effect:
o increase in ne
-]
- 1] B [l I'J
04 06 0.8 1 12 14 16 18 2
t[s]
Shot 82913: EC power, central FIR #6 and rescaled ne central
E”:'D T T T T T T T T 25
500 2
‘E_ 15 s
=, 400 -
o 1 2
o™ -
200 k . e . 05
s P [KW] e PR [ 7] e—occaled nel p=0)[m ]
I'J 1 | | i i | [ 1 | i D
04 06 0.8 1 1.2 14 16 18 2

# T
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B Outlook and conclusion

Summary and lessons learned

Model-based observers provide a valuable contribution in the
reconstruction of the dynamical states.

Many techniques can be adopted for the tuning of the observer
gains:

« Kalman Filter/ Extended Kalman Filter

RAPDENS multirate observer integrated in TCV plasma control
system, reconstruction comparable with post-shot TS.

Local density control for ECH discharges, staying below cutoff

« Improved reliability of density control with fringe jumps filtering.

S
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=PrL

B Outlook and conclusion

Summary and lessons learned

* Model-based observers provide a valuable contribution in the
reconstruction of the dynamical states.

« Many techniques can be adopted for the tuning of the observer
gains:

« Kalman Filter/ Extended Kalman Filter

« RAPDENS multirate observer integrated in TCV plasma control
system, reconstruction comparable with post-shot TS.

» Local density control for ECH discharges, staying below cutoff

« Improved reliability of density control with fringe jumps filtering.

THANKS FOR YOUR ATTENTION!
Questions?

»
©
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B Outlook and conclusion
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B Introduction to state observers

Concept of observability: derivation

Objective:

Compute x, with:
« aset of measurements {yy, ¥1, ---» Yk—1}
« asetof inputs {uy, uq, ..., Up_1}
« knowledge of the system (4, B, C, D)

Starting point: solution of the discrete state-

Space representation of:
Xk+1 = Axk + Buk
Yk = ka + Duk

X, = Axy + Bu,

X, = Ax; + Buy
X, = A[Axy+ Buy| + Buy
x, = A*xy + ABuy + Bu,

k-1

X = Akxo —+ Z Ak_l_iBul-
=0

Closed solution of discrete difference

equations:

k-1

x, = Afxy + Z Ak=1=tBy;
. - .i:0 ", .
* Dependence on initial condition x,
* Inputs {uy, uq, ..., Uk _1}

Measurements equation applied to the

closed solution:

Yi = ka +Duk
k-1

yr = CA%x, + 2 CA* 17'Bu; + Du,
i=0

Definition: modified measurement Y,:

k-1

Yk = Yir — Z CAk_l_iBul’ — Duk
=0

ul
N
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B Introduction to state observers

Concept of observability: derivation

One ends up with the following relation:
Y, =CA*x, [1]

X, has n elements, so one has to write n

equations using [1]. Observability matrix:
Yo=C - C - Cc | .
Y10: CA?O 2| ca | ca if the rank(0) = n, we ensure
= vl T X0 o=| uniqueness of the solution for x,
Yn—1 = CAn_le _CAn_l_ _CAn_l_

Remark: Adding a number of equations to O s.t. N > n doesn’t change the rank of O.
(Cayley—Hamilton theorem, A™ = ayl + a1 A + a,A? + -+ + a,,_1 A" 1, m > n, size of matrix A: [n,n] ).

g.e.d.

U1
w
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B Introduction to state observers

Observability: example of the 1D motion of a vehicle

Discrete state-space representation, The system is not observable...
with sampling time At:

, .. this makes sense, since with velocity or
rkﬂ] [1 At ] [At /Zm] acceleration information one cannot reconstruct the

Vie+1 At/m position initial condition.
1] [rk] [ 0 ] g Velcy(MacRs) Vice-versa, the position measurements are
V] 11/m ' ﬁ,?;iigfrgmeter) sufficient to reconstruct the position and velocity
states.
Observability matrix: Conclusion:

« Well-thought design of the measuring system
C (C matrix) enables the reconstruction of the state
0=ca
CA X -
« Many measurements can ensure redundancy in
the state observation, in case of failure.

Let’s try to apply the previous concepts to design a

CA

o oo o
O RO

5

N
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B Introduction to state observers

Kalman filter: example of the 1D motion of a vehicle

Let’'s adopt the Kalman filter to tackle the issues related with:
« The mismatching initial condition
« The disturbance in the input force

Tuning of the observer gains:

I = Ly Lz]

Ly Ly

Only the coefficients L; and L5 play a role in modifying the poles of the

estimation equation response.

c-fs 3

Ly O
LC‘[Lg 0]

%%

ak,measured

L]

Uk, Qg

: 5#“.“

Tk

rk,measured

U1
(3]
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RAPDENS control-oriented model
Plasma electron density

- RAPDENS: Rapid Plasma DENSsity Simulator

» Coded in Matlab/Simulink for RT application in Plasma Control Systems.

RAPDENS code

Computation of 1D flux-surface averaged electron plasma density Ap—
profile.
Coupled with 0D time evolution of:
« Vacuum neutrals inventory.
« Wall neutrals inventory.
Observer based on Extended Kalman Filter algorithm (EKF)

lonization

F Recombination

Valve
First applications on TCV and AUG [4]. —
Currently deployed on AUG for electron density reconstruction - il /i
and control via gas valve and pellet-fuelling [5] E
ITER-based scenario controllers and simulations [6, 7] ?L' I l
Integration and employment on TCV [8,9], integrating FIR and ! Purmp

T. C. Blanken et al., Fusion Engineering and Design 126,

TS in the Kalman filter procedure.
doi:10.1016/j.fusengdes.2017.11.006., 2018.

[4]T. C. Blanken et al., Fusion Engineering and Design 126, doi:10.1016/j.fusengdes.2017.11.006., 2018.

[5]T. O.S.). Bosman et al., Fusion Engineering and Design 170, doi:10.1016/j.fusengdes.2021.112510., 2021.

[6] T. Ravensbergen, Phd Thesis (Research TU/e / Graduation TU/e), Mechanical Engineering., 2021.

[7]T.0.S.) Bosman et al., J. Phys. Commun. vol.5, p.115015, doi:10.1088/2399-6528/ac3547, 2021.

[8] F. Pastore et al., "Integration of a multi-rate electron density profile observer in the plasma control system of TCV", 49th EPS, July 2023.
[9] F. Pastore et al., “Model-based electron density estimation using multiple diagnostics on TCV”, doi: 10.1016/j.fusengdes.2023.113615, 2023.
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RAPDENS control-oriented model

Plasma electron density

RAPDENS predictive model

RAPDENS model equations

Flux-surface averaged n. equation:

0 / 9, / JNe /
E(HQV) — a_p [V (G1Da—p + Goi/ne>] = SV

Diffusion coeff.

Vacuum inventory equation:

Drift velocity (1 )

aN
dfv — rrec — riz + I—|p:pe + rrecy. + rvalve - I_pump
(2)
Wall inventory equation:
aN
wa — rSOL—)W&” — rrecy. (3)

Sources/sinks of electrons:

S = Siz— Srec — Ssor-wau + Sy + Spellets (4)

neutrals
Valve __|
y

{ : f—,
¢
-

T. C. Blanken et al., Fusion Engineering and Design
126, doi:10.1016/j.fusengdes.2017.11.006., 2018.

ul
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ePFL  Local density control for ECH discharges

« Traditional control using central FIR chord #6? » Lack of proportionality in the ECH
-« Comparison between: phase, due to:

» FIR Signa| H6 = prOfile flattening

u Ne (p:O) rescaled (at t=0.20 S) " piCk'Up Of denSity in the SOL

S1hzot 82913: avg. norm. ohmic vs central ECH

Ul
(+]

Francesco Pastore

S0 Shot 82913: EC power, central FIR #6& and rescaled ne central
| | I |

Avg. ne ohmic, t:[0.42 s - 0.60 s]
Avg. ne ECH core, t:[0.75 s - 1.00 s]

T T T T 25

Pec [KW]

08 r

Pegy [KW] FIRg [m P]  —eccaled el p=0)[m ] —
0 1 | | 1 | | | 1 1 | § 0 e 06 L
04 0.6 0.a 1 1.2 14 16 1.8 2 @ y )

5 t = n_ profile flattening
5 [s] e
g 04 + due to central ECH
3 action on transport coeffs.
c >
o .
55 ohmic
k) 0.2
= C
59
° 3
n 2

(]
E © 0 1 1 1 1 1
g5 0 0.2 0.4 0.6 0.8 1
< ®
o
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B Introduction to state observers

Luenberger observer: example of the 1D motion of

a vehicle

Let’'s adopt the Luenberger observer to tackle the issues related with:
« The mismatching initial condition

Tuning of the observer gains:

[ = Ly Lz]

Ly Ly

Only the coefficients L; and L5 play a role in modifying the poles of the

estimation equation response.

c-fs 3

Ly O
LC‘[Lg 0]

%%

ak,measured

L]

Uk, Qg

: 5#“.“

Xk

X kmeasured

ul
©
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B Introduction to state observers

Let’s study the impact of L; and L5 on the eigenvalues of A — LC:

(2-L1)*Ly /1—4L3/L%

z-plane

}\1,2 = 2 Unstable
L, = 0.01 System stabilized!
Ly =0.02s7" R

A, = 0.9928 571

A, = 0.9972 s71

Ay, =eig(d) = [11] /

Unstable open loop system

ak,measured

L] Uy, A

ol el

Luenberger observer: example of the 1D motion of
a vehicle

%%

D
(=

Xk xk,measured

v
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B Introduction to state observers

Closed-loop model-based state estimation:
mismatch on initial conditions

Effect of mismatch between x, and x:

Mismatch on initial condition for the
velocity:

. _[r]_[0] ~ _[fol_ 10
%= [ug] = o] %= [5;] =1
e m=1,F, =1"-step(t).

 Introduction of noisy
measurement on position:

Yr = Tplant + N(0,1)

« Let’s start with zero gain to the
observer matrix...

« Exactly same behavior
recovered, Observer behaves as
the open loop Model

v [m/s]

10

Observer
— — — Model

L |— — —Plant

10

| |— — —Plant

Observer
— — — Model

= P F= s3] oo
T T T

10

2}
=
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B Introduction to state observers

Closed-loop model-based state estimation:
mismatch on initial conditions

Effect of mismatch between x, and x:

Mismatch on initial condition for the
velocity:

. _[r]_[0] ~ _[fol_ 10
%= [ug] = o] %= [5;] =1
e m=1,F, =1"-step(t).

 Introduction of noisy
measurement on position:

Yr = Tplant + N(0,1)

« Selection of the Observer gains:
L3 — 002 S_l

v [m/s]

60

40 r

20¢r

Observer
— — — Model
— — —Plant

Observer
— — — Model

| |— — —Plant

<]
N
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ePFL  Closed-loop model-based state estimation:

mismatch on initial conditions

(9]
w

B Introduction to state observers

Effect of mismatch between x, and x:

The observer effectively brings
the estimation error e;, to zero!

60

40 r

Observer
— — — Model
— — —Plant

E -
- It also effectively filter 20 ~
measurement noise in the . e .
estimation of the position . ’ ) ’ w0
101 Observer —
— — — Model ..-*""'FF-J
20 - 81 |—= — —plant -
Y £ e
=
E EI! 10
= t[s]
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EPFL  Closed-loop model-based state estimation

Vehicle

1

Tk+1] [1 At” ] [Atz/Zm

Vk+1 At/m

e[t S+l

E

Observer

Yk

Tk+1
vk+1

1 At ] At2/2m
At/m

Vi = o 0] [vkl+l1/m]F"

1 2 \yk
L3 4 7 [\
N\
J J
7 =+
= Oe
vation residual i

64
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RAPDENS control-oriented model
Plasma electron density

State space representation of RAPDENS model

Space discret.: cubic B-splines with

finite support m
FEM weak formulation n.(p, t) = Z A (0)be (1)
1 T T T T — a=1
L === b f
0 0.2 0.4 0.6 0.8 1 x(t) = | Nw () u(t) = | Inmi(t)
Flux label p N, (1) Fpellet(t)
Time discret.: trapezoidal method
Xk+1 — Xk _ B
7 =(1-0)(A(px) + f(Di, xz) + Buy) == | % = fa(P_1> Xk-1) + Ba(Dy_1)Uic—1
5

+ O(A(Pr+1) + [ Prs1, Xka1) + Bugeyq) Discrete state space representation
of the predictive model

p=lcop cu Ttp I, V' G Gy Q]

1 }

Limited/ L/H mode Geom.
diverted guantities

(2]
(3]
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EPFL  Observer for electron density reconstruction o

. Definition of the augmented state-space representation:

xk+1|k o fd(xk|k,pk) + ngk + Bduk + W;g Predictive model

Sk+1jk = Sk + Wi

Vi = C(Dk)Xk+1jk + Vi

-oriented model

RAPDENS control
Plasma electron density



EPFL  Observer for electron density reconstruction

. Definition of the augmented state-space representation:

Xi+1k = fa(Xkpk Pre) H BcSk t+ Bauy + wi

q _ q +w Disturbances:
k+1|k klk k Actuators and/or modeling errors.

It acts as an integral term,
Yk = C(pk)xk+1|k T Vg compensating for offsets

RAPDENS control-oriented model

Plasma electron density

[<2]
~

Francesco Pastore
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-oriented model

RAPDENS control
Plasma electron density

Observer for electron density reconstruction

. Definition of the augmented state-space representation:

Xi+1e = fa(Xkpe Pre) + BcSk + Bauy + wi

Ck+1lk = Skik T Wi

Vi = C(Pk)Xk+1jk + Vi

Measurements
equation

68
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-oriented model

Plasma electron density

RAPDENS control

Observer for electron density reconstruction

. Zero-mean white noise added to prediction and measurement equation:

Xir1e = fa(Xkpk Pre) + BcSk + Bauy [+ wi
Ck+1lk = Skik /T wi

Vi = C(Pk)Xk+1ik |t Vi

Qx

State process
covariance matrix

Ry
Measurements noise
covariance matrix

69

—

©
o

—
LL



=PrL

-oriented model

Plasma electron density

RAPDENS control

. Predictive step:  Xyiqx =

Estimation of the augmented state via EKF

fa(Xkie Pr) + BcSkik

B
+ Guk G = [ d]
qk|k 0

- Correction step:  Xpy1jk+1 = X1k + LrZk

Where L, is the Extended Kalman Filter gain

70
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RAPDENS control-oriented model
Plasma electron density

Observer for electron density reconstruction

Fy

H,=[C{,) 0] Q= [

Linearized dynamics for the state

equation:

%
Ox)

Pk Xk|k
0

B

Ime

|

Q. O
0 Qf

B4
0

|

Covariance matrix for the prediction
error of augmented state E((x—)):

Pei1jk = FiePepFe + Qx

|

* |nnovation residual covariance matrix:

Sk = Ry + HyPyyqpicHy

Extended Kalman filter gain:

Ly = Pr1c HESi!

« Covariance matrix for the posterior error of
augmented state:

Piitje+r = (U — LigHy) Pryq

~
[y
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RAPDENS observer scheme

Xk|k—1

EPFL
LDH state
detector RT-LIUQE
c Gox(Pr) G1k(Pr)
L Vo (Pr) » Iy ks Cla ke
u .
; Density
Predictive Model
= Pellets
= NBI Ifk—uk—l
VTS k
TS
available?

Prediction step:

Gas valve fuelling u;, from valve controller readback.
Confinement state L/H-mode boolean ¢;

= Transport coefficient Dy p,

= Penetration depth of neutrals Aiz’l/h(ionization process)
Magnetic plasma equilibrium from RT-LIUQE:

= Geometrical quantities G, = (|Vp|)and G; = (|Vp|?)

= Plasmavolume V), , and current [, ;
Urs . estimated from last RT-TS profile

Previous time step state Xj_qjx—1

Output from prediction step:

Predicted state Xy x—1

~
N
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RT-LIUQE

Synthetic measurement step:

Assembly of the diagnostic model H,,
using RT-LIUQE info:

« Plasma domain
« Poloidal + toroidal flux

Hj, maps linearly the n, profile coming
from the predictive step Xy x—4 to provide

synth. measurements hyx_1.-

A _ |HxFir
klk—1 = Xk k-1

Hyrs
hijk—1 = Herir Xkjk-1 else
Innovation residual is computed: Zy

= iik|k—1 — hy

RAPDENS observer scheme

Xk|k—1

1
L|Jk(1-?!Z)

@ (Ug), Domainy,

l

Diagnostics Hrir

Model Hrp

RT- diagnostics

]
gzgg]es}?r:]g FIR (digitally filtered)
hFIR k
TS available? = hrr hy % h'r_gk
EFIR
klk —1 t
hrs .. hklk 1

klk—1

~
w
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RAPDENS observer scheme

Detection of diagnostic faults and its
correction:

 Innovation residual can be used to isolate
diagnostic faults (e.g. fringe jumps)

« Model-based prediction doesn’t exibit
step-wise variation of line-integrated
density of 10°m~2in 1 ms.

*  Zgcorr = Correction_algo(zy)

« Corrupted channels are flagged and l

~
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suppressed for the upcoming correction Zy
step. l
S LK COTT wmm— Diagnostic

faults detect
ok_channelsy, and correct
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EPFL RAPDENS observer scheme

— ne,k (pk) -‘

Post-
processing

VTS k

TS
available?

Xk|k—1

Correction step:
+ The predicted state is corrected with info from diagnostics:
J/C\klk = ﬁk|k—1 + Lka,corr(Okchannelsk)

« Covariance matrices associated with measurements R and
model Q tune the weight of the Kalman gain.

» Possibility to:

= trust more the model w.r.t. measurements
(in case of noisy/faulty diagnostic signals)

= trust more the model w.r.t. measurements
(lack of accuracy of the model).

Postprocessing:

Computation of n, ;. (py) and line-averaged density NEL; crs

+v

o +
Xk|k _O‘i

. VA
Kalman Gain |* gy

Matrix Ly <
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cPFL RAPDENS observer scheme

Correction step

— N 1 (Pk) -I

Density

Predictive Model

Xk|k—1

TS

VTS k

available?

Post-
processing

Xk |k B
HEeip i } REir K|k

Computation of transport coefficient vy gy :

(steady state approx. +S = 0)

Vrs , adopted by the Density Predictive Model and

Vrsk = —D

60 Hz with new RT-TS data.

Offsets/fringe jumps FIR correction:

Gl 1 ane
GO Ne ap

updated at

= FIR synth. from TS fitted profile: hgig ki = Hrrr ik Xk|k

= Shpry = hpirg — 71F1R,k|k applied in Diagnostic faults

detect and correct step.

= offset applied to upcoming FIR data, updated at
60 Hz with new RT-TS data.

+v

S o
xk|k _047

Kalman Gain
Matrix Ly

— Zk,corr

Diagnostic
faults detect

>
«

ok_channels;,

and correct

+
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EPFL  Tokamak a configuration variable - TCV &

. . @ [ PF coils
= Medium-sized tokamak, R = 0.88m, B; <154T,a~ 025m. = Ei = Magnetic probes

x Flux loops

= Unique shaping capabilities with 16 independent poloidal field
coils+ highly elongated vacuum vessel.

= EXxploration of different magnetic configurations for:
« Alternative divertor concepts

* Negative triangularity plasmas

|
g
4]
- Double nulls, doublets... %
'
i
q
g

58 BE BE B8

b) SND ©)  srominus 9 sxo
g 7 g P g £
L L & L
B J @i :
2 2 2 2
04
0.2
Eo _
[+ 4
-0.2 B x
04 @ .
b F. Pesamosca “Model-based optimization of magnetic
) control in the TCV tokamak: design and experiments.”
0.6 06 08 1.0 PhD thesis at EPFL Lausanne, Apr. 2021, p. 29
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EPFL  TCV heating system - NBI e

= Possibility to heat the plasma with two NBI systems:

= Opposite directions to control plasma rotation. "

= NBI-1: B, = 1.32 MW, 28 keV in deuterium. 7!

= NBI-2: B,z = 1.12 MW, 50 keV in deuterium.

» Feedback controlled for e.g. beta control 0.5!
= DNBI to provide with CXRS system: & ol

= Carbon temperature & density g

= Plasma rotation -0.5]

=1.57

15 1 05 0 05 1 15

A. Karpushov et al., “Upgrade of the neutral beam heating system
on the TCV tokamak — second high energy neutral beam .” FED,
187 (2023) 113384

doi: https://doi.org/10.1016/j.fusengdes.2022.113384



= Microwave heating for ECRH and ECCD with:

= 1 Gyrotron in X2 (82.7 GHz), B4, = 600 kW.

= 2 Gyrotrons in X3 (126 GHz), P,,,,, = 900 kW.

= 2 Gyrotrons dual X2-X3 (82.7 GHz -118 GHz) ,

Pax= 1800 kW.

= Upper and equatorial launchers for X2,
RT compatible steering mirrors (preemption &
suppression of NTMs).

= Vertical launcher for X3.

- = | - 1
- = -
2. = > 1

2N

79

o X3 (126 GHz)

" 2x

it

\ -
X2 (83-84 GHz)
I+
X3 (118 GHz)

F. Pesamosca “Model-based optimization of magnetic

control in the TCV tokamak: desi

gn and experiments.”

PhD thesis at EPFL Lausanne, Apr. 2021, p. 29



EPFL Local density control for ECH + NBls discharges
158h0t 82893: control of ne central, ECH+NBI-1, NBI-1+NBI-2 central heating X 150 20
cvl'a— n, central n, central, reference I n, central TS |
=
2 10 -
o
S 544
c =i
@
(@]
()
< 0
t[s]
1000 Shot 82893: External power, central FIR #6 and rescaled ne central .
Pecy kW] Pygis (kW] Prgr2 (kW] | |
800 FIR, [m ] rescaled ne( p=0)[m ]
— 600
<
=<,
o 400
200
0
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« RAPDENS time-averaged profiles on different phases of
the discharges 82913 and 82893

E‘;hzot 82913: avg. norm. ohmic vs central ECH

Avg. ne ohmic, t:[0.42 s - 0.60 s]
Avg. ne ECH core, t:[0.75 s - 1.00 s]

ECH

0.8

n, [

ohmic
0.6 r
n, profile flattening
04 b due to central ECH
action on transport coeffs.
0.2
O 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Pior

1.2

Sh% 82893: avg. norm. ohmic vs core NB1+NB2

n_ [

0.8

06

04

0.2

Avg. ne ohmic, £:[0.42 s - 0.60 s]
Avg. ne NB1+NB2, t:[1.50 s - 1.75 g]

n, profile peaking

due to central NB1+NB2
fuelling.

0.2 0.4 0.6 0.8 1 1.2

Ptor

Local density control for ECH + NBIs discharges o

Sh102t 82893: avg. norm. ohmic vs core ECH+NBI

n, [

0.8

06

04

02

Avg. ne ohmic, t:[0.42 s - 0.60 s]
Avg. ne ECH+NB1, t:[0.80 s - 1.10 s]

ECH +NB 1
ohmic

ECH and NBI-1 actions
compensate each other,
profile close to ohmic profile
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