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Motivation behind the design of an observer 3

Given a plant P represented by a generic Multi-Input 

Multi-Output (MIMO) discrete-time state space 

representation:

𝑃
𝒖𝑘 𝒚𝑘

One can be interested in the reconstruction of the internal state 

𝒙𝑘 of the plant for:

• Full-state feedback control

• Infer 𝒙𝑘 not directly measured in 𝒚𝑘

• Example: infer a kinetic profile from integral values of the 

profiles along the lines of sight of the diagnostic

• Filter out/fuse different diagnostic data, synthetized in 𝒙𝑘

ቊ
𝒙𝑘+1 = 𝒇𝑘(𝒙𝑘 , 𝒖𝑘 , 𝑡𝑘)
𝒚𝑘 = 𝒈𝑘(𝒙𝑘 , 𝒖𝑘 , 𝑡𝑘)

State evolution equation

Measurement equation

Inputs Measurements
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Many techniques can be devised for such task:

• Open-loop model-based estimation

• Luenberger observer

• Kalman Filter (or Extended Kalman Filter), …



Motivation behind the design of an observer 4

Plant

ቊ
𝒙𝑘+1 = 𝒇𝑘(𝒙𝑘 , 𝒖𝑘,𝑡𝑘)

𝒚𝑘 = 𝒈𝑘(𝒙𝑘 , 𝒖𝑘 , 𝑡𝑘)𝒖𝑘 𝒚𝑘

൝
ෝ𝒙𝑘+1 = ෠𝒇𝑘 (ෝ𝒙𝑘 , 𝒖𝑘 , 𝑡𝑘)

ෝ𝒚𝑘 = ෝ𝒈𝑘(ෝ𝒙𝑘 , 𝒖𝑘 , 𝑡𝑘)

ቊ
ෝ𝒙𝑘+1 = 𝒇𝑘(ෝ𝒙𝑘 , 𝒖𝑘 , 𝑡𝑘)
ෝ𝒚𝑘 = 𝒈𝑘(ෝ𝒙𝑘 , 𝒖𝑘 , 𝑡𝑘)

❑ By adopting a mathematical model of the plant P:     

• If the dynamics is known, one can directly adopt     
(𝒇𝑘, 𝒈𝑘) for the computation of ෝ𝒙𝑘.

• Otherwise, one can model the system P with (෠𝒇𝑘, ෝ𝒈𝑘)
where ෠𝒇𝑘 ≈ 𝒇𝑘 and ෝ𝒈𝑘 ≈ 𝒈𝑘.

❑ How can one compute ෝ𝒙𝑘 (estimate of 𝒙𝑘)?

Known data:

• Input 𝒖𝑘

• Measurements 𝒚𝑘

Unknown data:

• 𝒙0, initial condition of 𝒙𝑘
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Open-loop model-based state estimation 5

Before starting with computations, let’s 

make the following hypothesis:

• The dynamics of the plant P is known.

Given ෝ𝒙0 and 𝒖𝑘, one can use the 

Observer block to estimate:

• the state ෝ𝒙𝑘

• the synthetic measurements ෝ𝒚𝑘.

ቊ
𝒙𝑘+1 = 𝒇𝑘(𝒙𝑘 , 𝒖𝑘,𝑡𝑘)

𝒚𝑘 = 𝒈𝑘(𝒙𝑘 , 𝒖𝑘 , 𝑡𝑘)𝒖𝑘 𝒚𝑘

ቊ
ෝ𝒙𝑘+1 = 𝒇𝑘(ෝ𝒙𝑘 , 𝒖𝑘,𝑡𝑘)

ෝ𝒚𝑘 = 𝒈𝑘(ෝ𝒙𝑘 , 𝒖𝑘 , 𝑡𝑘)

𝒖𝑘 ෝ𝒚𝑘

ෝ𝒙𝑘

Plant

Observer

ෝ𝒙0
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Open-loop estimation of the motion of a vehicle 6

Example: 1D motion of a point-wise vehicle 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒

Propulsion 

force

𝒖𝑘 = 𝐹𝑘

Continuous time state-

space representation:

ሶ𝑟
ሶ𝑣

=
0 1
0 0

𝑟
𝑣

+
0

1/𝑚
𝐹(𝑡)

𝑟𝑘+1

𝑣𝑘+1
=

1 ∆𝑡
0 1

𝑟𝑘

𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

Discrete time state-space 

representation, with sampling 

time ∆𝑡 (constant-sampling):
𝐹

𝑂 𝑟𝑘

𝑣𝑘 , 𝑎𝑘

Exponential matrix discretization

Measurements

not treated yet
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Open-loop model-based state estimation:              
mismatch on initial conditions

7

𝑟𝑘+1

𝑣𝑘+1
=

1 ∆𝑡
0 1

𝑟𝑘

𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘
𝐹𝑘

Ƹ𝑟𝑘+1

ො𝑣𝑘+1
=

1 ∆𝑡
0 1

Ƹ𝑟𝑘

ො𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

𝐹𝑘

ෝ𝒙𝑘

Vehicle

Observer

Effect of mismatch between ෝ𝒙0 and 𝒙0:

Mismatch on initial condition for the 

velocity:

• 𝒙0 =
𝑟0

𝑣0
=

0
0

, ෝ𝒙0 =
Ƹ𝑟0

ො𝑣0
=

0
1

• 𝑚 = 1, 𝐹𝑘 = 1 ∙ 𝑠𝑡𝑒𝑝(𝑡). 

𝒙0 =
0
0

ෝ𝒙0 =
0
1

Unknown

Initial condition

guess
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Open-loop model-based state estimation:              
mismatch on initial conditions

8

𝑟𝑘+1

𝑣𝑘+1
=

1 ∆𝑡
0 1

𝑟𝑘

𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

Effect of mismatch between ෝ𝒙0 and 𝒙0:

Mismatch on initial condition for the 

velocity:

• 𝒙0 =
𝑟0

𝑣0
=

0
0

, ෝ𝒙0 =
Ƹ𝑟0

ො𝑣0
=

0
1

• 𝑚 = 1, 𝑭𝒌 = 𝟏 ∙ 𝒔𝒕𝒆𝒑(𝒕). 

• 1) Offset on velocity estimate

• 2) Estimation error on the 

position drifts over time

F
ra

n
c
e
s
c
o
 P

a
s
to

re

In
tr

o
d
u
c
ti
o
n
 t

o
 s

ta
te

 o
b
s
e
rv

e
rs

r

෡

෡



Open-loop model-based state estimation:                     
effect of disturbances on the input

9

𝑟𝑘+1

𝑣𝑘+1
=

1 ∆𝑡
0 1

𝑟𝑘

𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

𝐹𝑘

Ƹ𝑟𝑘+1

ො𝑣𝑘+1
=

1 ∆𝑡
0 1

Ƹ𝑟𝑘

ො𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

𝐹𝑘

ෝ𝒙𝑘

Vehicle

Observer

ෝ𝒙0 =
0
1

+

+

Effect of disturbance on the input, 

additive standard Gaussian noise        

𝑑𝑘 = 𝑁(0,1) on Force input.

From the observer point of view, the 

input noise is unknown and doesn’t 

enter in the model inputs.

𝑑𝑘
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Motivation behind the design of an observer 10

Effect of disturbance on the input, 

additive standard Gaussian noise        

𝑑𝑘 = 𝑁(0,1) on Force input:

• Same initial condition
𝑥0

𝑣0
=

0
1

.

• No external forcing term 𝐹𝑘 = 0.

• State estimation maximum error 

(in 100 s):

•  ~10% on position.

•  ~20% on velocity.

r
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Open-loop state estimation: linear time-independent 
system

11

For the next derivations, let’s consider the 

additional hypothesis:

• The plant can be represented by a 

linear time-independent discrete 

system (LTI):

ቊ
𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘

𝒚𝑘 = 𝐶𝒙𝑘 + 𝐷𝒖𝑘

▪ 𝒙𝑘, state vector ,                        size [n,1]

▪ 𝒖𝑘, inputs vector,                      size [r,1]

▪ 𝒚𝑘, measurements vector,   size [m,1]

▪ A, system/state matrix,          size [n,n]

▪ 𝐵, input matrix,                          size [n,r]

▪ 𝐶, output matrix,                       size [m,n]

▪ 𝐷, transition matrix,                 size [m,r]

ቊ
𝒙𝑘+1 = 𝐴𝒙𝑘 +  𝐵𝒖𝑘

𝒚𝑘 = 𝐶𝒙𝑘 + 𝐷𝒖𝑘𝒖𝑘 𝒚𝑘

ቊ
ෝ𝒙𝑘+1 = 𝐴ෝ𝒙𝑘 +  𝐵𝒖𝑘

ෝ𝒚𝑘 = 𝐶ෝ𝒙𝑘 + 𝐷𝒖𝑘

𝒖𝑘 ෝ𝒚𝑘

ෝ𝒙𝑘

Plant

Observer

ෝ𝒙0
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Weaknesses of open-loop state estimation 12

Study of the estimation error:         

ො𝒆𝑘 = 𝒙𝑘 − ෝ𝒙𝑘

Innovation residual:

ො𝒛𝑘 = 𝒚𝑘 − ෝ𝒚𝑘

Plant state system:

ቊ
𝒙𝑘+1 = 𝐴𝒙𝑘 +  𝐵𝒖𝑘

𝒚𝑘 = 𝐶𝒙𝑘 + 𝐷𝒖𝑘

State estimation system:

ቊ
ෝ𝒙𝑘+1 = 𝐴ෝ𝒙𝑘 + 𝐵𝒖𝑘

ෝ𝒚𝑘 = 𝐶ෝ𝒙𝑘 + 𝐷𝒖𝑘

Estimation error system:

ቊ
ො𝒆𝑘+1 = 𝐴ො𝒆𝑘

ො𝒛𝑘 = 𝐶 ො𝒆𝑘

The state estimation evolves over 

time solely with the system 

dynamics represented by 𝐴:

• If the plant is unstable, the 

estimation error will diverge 

over time.

• Enforce the stability condition 

by manipulating the poles of the 

estimation error equation.
Automatic Control Systems, 10th Edition. 
Dr. Farid Golnaraghi, Dr. Benjamin, C. Kuo,
2017 McGraw-Hill Education.
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Weaknesses of open-loop state estimation 13

Estimation error system:

ቊ
ො𝒆𝑘+1 = 𝐴ො𝒆𝑘

ො𝒛𝑘 = 𝐶 ො𝒆𝑘

𝑥𝑘+1

𝑣𝑘+1
=

1 ∆𝑡
0 1

𝑥𝑘

𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

𝒚𝑘 =
1 0
0 0

𝑥𝑘

𝑣𝑘
+

0
1/𝑚

𝐹𝑘

Discrete state-space 

representation, with 

sampling time ∆𝑡:

Example: 1D motion of a point-wise vehicle 

𝐴 =
1 ∆𝑡
0 1

𝝀1,2 = 𝑒𝑖𝑔 𝐴 = [1,1]

Marginally stable system,

open-loop state estimation fails  
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Closing the loop: state observer and measurements 14

What are we missing?

• We are just currently using the info contained in the inputs 𝒖𝑘…

• Measurements 𝒚𝒌 coming from the plant represent a rich

information!

ቊ
ෝ𝒙𝑘+1 = 𝐴ෝ𝒙𝑘 +  𝐵𝒖𝑘 + 𝐿(𝒚𝑘 − ෝ𝒚𝑘)

ෝ𝒚𝑘 = 𝐶ෝ𝒙𝑘 + 𝐷𝒖𝑘

• Additional input term to the state estimation equation that encorporates the

difference between:

• The plant measurements 𝒚𝑘

• The synthetic measurements ෝ𝒚𝑘
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Closing the loop: state observer and measurements 15

• Feedback loop to take into account
the innovation residual:                                

 ො𝒛𝑘= 𝒚𝑘 − ෝ𝒚𝑘 .

• State observers: integration of
measurements with model
prediction in a self-consistent way.

ቊ
𝒙𝑘+1 = 𝐴𝒙𝑘 +  𝐵𝒖𝑘

𝒚𝑘 = 𝐶𝒙𝑘 + 𝐷𝒖𝑘𝒖𝑘 𝒚𝑘

𝒖𝑘 ෝ𝒚𝑘

ෝ𝒙𝑘

Plant

Observer

ෝ𝒙0

ො𝒛𝑘
Innovation residual

+

-

Observer matrix

𝐿𝑘 

+

+
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ቊ
ෝ𝒙𝑘+1 = 𝐴ෝ𝒙𝑘 + 𝐵𝒖𝑘 + 𝐿𝑘 ො𝒛𝑘

ෝ𝒚𝑘 = 𝐶ෝ𝒙𝑘 + 𝐷𝒖𝑘



Measurements: example of the 1D motion of a vehicle 16

Example: 1D motion of a point-wise vehicle 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒

Propulsion 

force

𝒖𝑘 = 𝐹𝑘

• Position (via GPS)

𝒚𝑘

• Acceleration        

(via accelerometer)

Continuous state-space 
representation:

ሶ𝑟
ሶ𝑣

=
0 1
0 0

𝑟
𝑣

+
0

1/𝑚
𝐹

𝒚 =
1 0
0 0

𝑟
𝑣

+
0

1/𝑚
𝐹

𝑟𝑘+1

𝑣𝑘+1
=

1 ∆𝑡
0 1

𝑟𝑘

𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

𝒚𝑘 =
1 0
0 0

𝑟𝑘

𝑣𝑘
+

0
1/𝑚

𝐹𝑘

Discrete state-space 
representation, with sampling 
time ∆𝑡:

• Position (via GPS)

• Acceleration        

(via accelerometer)

𝐹𝑘

𝑂 𝑟𝑘 𝑟𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑣𝑘 , 𝑎𝑘

𝑎𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
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Closed-loop state estimation 17

Study of the estimation error:         
ො𝒆𝑘 = 𝒙𝑘 − ෝ𝒙𝑘

ො𝒛𝑘 = 𝒚𝑘 − ෝ𝒚𝑘

Plant state system:

ቊ
𝒙𝑘+1 = 𝐴𝒙𝑘 +  𝐵𝒖𝑘

𝒚𝑘 = 𝐶𝒙𝑘 + 𝐷𝒖𝑘

State estimation system:

ቊ
ෝ𝒙𝑘+1 = 𝐴ෝ𝒙𝑘 + 𝑩𝒖𝑘 + 𝐿ො𝒛𝑘

ෝ𝒚𝑘 = 𝐶ෝ𝒙𝑘 + 𝐷𝒖𝑘

Estimation error system:

ቊ
ො𝒆𝑘+1 = (𝐴 −𝐿𝐶)ො𝒆𝑘

ො𝒛𝑘 = 𝐶 ො𝒆𝑘

−

• Matrix 𝐿 has size [n,m].
• By tuning the coefficients of 𝐿, 

one can stabilize the estimation 
error state equation.

• The coefficients of 𝐿 will 
determine the dynamical 
response of ො𝒆𝑘.

Important remark:
This procedure only works if the pair 
(A, 𝐶) is observable.

Automatic Control Systems, 10th Edition. 
Dr. Farid Golnaraghi, Dr. Benjamin, C. Kuo,
2017 McGraw-Hill Education.
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Concept of observability 18

Observability:

• Find the initial conditions 𝒙0 of a 

given system 𝑃 from:

• measurements {𝒚0, 𝒚1, … , 𝒚𝑁}
• inputs {𝒖0, 𝒖1, … , 𝒖𝑁}
• system (A, 𝐵, 𝐶, 𝐷) .

• The manipulation of the poles is 

not only connected to the values 

of 𝑳, but also to the structure of 

(𝑨, 𝑪).

Estimation error equation:

ቊ
ො𝒆𝑘+1 = (𝐴 −𝐿𝐶)ො𝒆𝑘

ො𝒛𝑘 = 𝐶 ො𝒆𝑘

Observability matrix:

𝒪 =

𝐶
𝐶𝐴
…

𝐶𝐴𝑛−1

Where 𝑛 is the size of the state vector.

• The matrix 𝒪 has size [mn,n] 

(rectangular matrix for MO systems).

• The system 𝑷 is observable if 

𝐫𝐚𝐧𝐤 𝓞 = 𝒏.

Derivation in backup slides…
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Observability: example of the 1D motion of a vehicle 19

Observability matrix:

𝑟𝑘+1

𝑣𝑘+1
=

1 ∆𝑡
0 1

𝑟𝑘

𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

𝒚 =
1 0
0 0

𝑟𝑘

𝑣𝑘
+

0
1/𝑚

𝐹𝑘

Discrete state-space representation, 
with sampling time ∆𝑡:

• Position (via GPS)

• Acceleration        

(via accelerometer)

𝒪 =
𝐶

𝐶𝐴
=

1 0
0
1
0

0
∆𝑡
0

Since ∆𝑡 ≠ 0, the matrix 𝒪 has rank 2, thus the

system is observable.

Remark:

• The acceleration measurement doesn’t

contribute to the observability of the system!

if the 𝑟𝑎𝑛𝑘 𝒪 = 2, the

system is observable.
𝒪 =

𝐶
𝐶𝐴
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Conclusion:

• Well-thought design of the measuring system

(𝐶 matrix) enables the reconstruction of the

state 𝒙𝑘.

• Many measurements can ensure redundancy

in the state observation, in case of failure.

Let’s try to apply the previous concepts to

design a closed-loop observer matrix 𝐿𝑘 for the

vehicle example.



20Tuning of the observer coefficients

F
ra

n
c
e
s
c
o
 P

a
s
to

re

What determines the choice in the selection of the matrix coefficients 𝐿?

• Dynamical performances of the observer

• Trust in the model/measurements

There are many techniques to tune the observer gains:

• Luenberger observer:

• Pole placement of 𝐴 − 𝐿𝐶 in the complex plane (deterministic approach).

• Good performances only for low-noise systems (no noise statistics).

• Static gain for 𝐿.

• Kalman Filter:

• Noise modeling contained in the formulation of the problem (stochastic 

approach).

• Optimal state estimate in the least-squares sense for linear systems.

• Kalman gain 𝐿𝑘 is time-dependent, to be computed at each time step.

• Can be easily extended for nonlinear systems (Extended Kalman Filter)
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Kalman filter: the optimal estimator for linear 
systems
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▪ Bayesian filter used as a systematic statistical framework to assimilate 
experimental data into simulations/RT models.

▪ First practical use in the aerospace applications, during the Apollo program.

▪ It enabled real-time spacecraft navigation by optimally fusing noisy sensor 
data (e.g., from radar and inertial systems) to estimate position and velocity.

Kalman filter: the optimal estimator for linear 
systems
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Apollo CSM Endeavour in lunar orbit during Apollo 15



Definition: covariance matrix entry for two elements 𝑖 and 𝑗 of a stochastic vector 𝒙 is defined as:

 𝑐𝑜𝑣 𝑥𝑖 , 𝑥𝑗 = 𝐸 𝑥𝑖 − 𝐸 𝑥𝑖 𝑥𝑗 − 𝐸 𝑥𝑗 𝐸 𝒙𝒙𝑇 =
𝑣𝑎𝑟(𝑥1) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑥1, 𝑥𝑁) ⋯ 𝑣𝑎𝑟(𝑥𝑁)

▪ The idea: associate a zero-mean Gaussian white noise to

• Predictive model equations: 𝒘𝑘, 𝑁(0, 𝝈w)

• Measurements equations: 𝒗𝑘, 𝑁(0, 𝝈υ)

▪ Plant state equation:

ቊ
𝒙𝑘+1 = 𝐴𝒙𝑘 +  𝐵𝒖𝑘 + 𝒘𝑘

𝒚𝑘 = 𝐶𝒙𝑘 + 𝐷𝒖𝑘 + 𝒗𝑘

▪ Associate covariance matrices to 𝒘𝑘 and 𝝊𝑘:

• Process covariance matrix:          𝑄𝑘 = 𝐸 𝒘𝑘𝒘𝑘
𝑇

• Measurement covariance matrix: 𝑅𝑘 = 𝐸(𝒗𝑘𝒗𝑘
𝑇)

Kalman filter: the optimal estimator for linear 
systems
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Algorithm formulation (formulation extended for time-varying systems):

▪ Predictive/Prior step:

ෝ𝒙𝑘+1|𝑘 = 𝐴𝑘ෝ𝒙𝑘|𝑘 + 𝐵𝑘𝒖𝑘 Prior error: ො𝒆𝑘+1|𝑘 = ෝ𝒙𝑘+1|𝑘 − 𝒙𝑘

ෝ𝒚𝑘 = 𝐶𝑘ෝ𝒙𝑘|𝑘 + 𝐷𝑘𝒖𝑘

▪ Correction/Posterior step:

ෝ𝒙𝑘+1|𝑘+1 = ෝ𝒙𝑘+1|𝑘 + 𝐿𝑘(𝒚𝑘 − ෝ𝒚𝑘)             Posterior error: ො𝒆𝑘+1|𝑘+1 = ෝ𝒙𝑘+1|𝑘+1 − 𝒙𝑘
.

Computation of the Kalman filter gain:

▪ Concept behind: find 𝐿𝑘 that minimizes the trace of the posterior covariance matrix

                                     𝑃𝑘+1|𝑘+1 = 𝐸(ො𝒆𝑘+1|𝑘+1 ො𝒆𝑘+1|𝑘+1
𝑇 )

▪ This process naturally incorporates the covariance matrices 𝑄𝑘 and 𝑅𝑘

▪ 𝐿𝑘 retains how much weight has to be put between model and measures:

• Low ||𝑄𝑘||/ ||𝑅𝑘||: more trust in the model 

• High ||𝑄𝑘||/ ||𝑅𝑘||: more trust in the measurements 

Kalman filter: the optimal estimator for linear 
systems
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Computation of the Kalman filter gain
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• 1) Prediction error covariance matrix

𝐸(ො𝒆𝑘+1|𝑘 ො𝒆𝑘+1|𝑘
𝑇 ):

• 2) Innovation residual covariance matrix

𝐸(ො𝒛𝑘 ො𝒛𝑘
𝑇):

𝑃𝑘+1|𝑘 = 𝐴𝑘𝑃𝑘|𝑘𝐴𝑘
𝑇 + 𝑄k

• 4) Posterior error covariance matrix

𝐸(ො𝒆𝑘+1|𝑘+1 ො𝒆𝑘+1|𝑘+1
𝑇 ):

• 5) Repeat steps 1) to 4) before the

correction step, setting:

𝑃𝑘+1|𝑘+1 = 𝐼 − 𝐿𝑘𝐶𝑘 𝑃𝑘+1|𝑘

𝑆𝑘 = 𝐶𝑘𝑃𝑘+1|𝑘𝐶𝑘
𝑇 + 𝑅𝑘

• 3) Extended Kalman filter gain

min
𝐿𝑘

𝑡𝑟(𝑃𝑘+1|𝑘+1):

𝐿𝑘 = 𝑃𝑘+1|𝑘𝐶𝑘
𝑇𝑆𝑘

−1

𝑃𝑘+1|𝑘+1

𝑧−1

𝑃𝑘|𝑘



26Kalman filter: example of the 1D motion of a vehicle
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Let’s adopt the Kalman filter to tackle the issues related with:

• The mismatching initial condition

• The disturbance in the input force
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Graphical representation of the Gaussian distributions for:

• Measurement position 𝑟𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, covariance 𝑅𝑘

• Predicted position estimate Ƹ𝑟𝑘+1|𝑘, covariance 𝑃𝑘+1|𝑘

• Posterior position estimate Ƹ𝑟𝑘+1|𝑘+1, covariance 𝑃𝑘+1|𝑘+1

𝑂 𝑟𝑘 𝑟𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝑟

Ƹ𝑟𝑘+1|𝑘+1

Ƹ𝑟𝑘+1|𝑘



Closed-loop model-based state estimation:              
mismatch on initial conditions

27

Effect of mismatch between ෝ𝒙0 and 𝒙0:

Mismatch on initial condition for the 

velocity:

• 𝒙0 =
𝑟0

𝑣0
=

0
0

, ෝ𝒙0 =
Ƹ𝑟0

ො𝑣0
=

0
1

• 𝑚 = 1, 𝐹𝑘 = 1 ∙ 𝑠𝑡𝑒𝑝(𝑡). 

• Introduction of noisy 

measurement on position:

     𝑦𝑟 = 𝑟𝑝𝑙𝑎𝑛𝑡 + 𝑁(0,1)

• Let’s start with zero gain to the 

observer matrix: 𝐿𝑘 = 0

• Exactly same behavior 

recovered, Observer behaves as 

the open loop Model
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Closed-loop model-based state estimation:              
mismatch on initial conditions

28

Effect of mismatch between ෝ𝒙0 and 𝒙0:

• 𝑅𝑘 = σ𝑅
2 1 0

0 1
, σ𝑅

2 = 1

• 𝑄𝑘 = σ𝑄
2 1 0

0 1
, σ𝑄

2 = 10−2

• Successful convergence of the

posterior error estimate to zero

• Still a bit noisy, let’s try to filter it

out by playing with σ𝑄
2
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Closed-loop model-based state estimation:              
mismatch on initial conditions

29

Effect of mismatch between ෝ𝒙0 and 𝒙0:

• 𝑅𝑘 = σ𝑅
2 1 0

0 1
, σ𝑅

2 = 1

• 𝑄𝑘 = σ𝑄
2 1 0

0 1
, σ𝑄

2 = 10−6

• Successful convergence of the

posterior error estimate to zero

• Noise completely filtered out!

F
ra

n
c
e
s
c
o
 P

a
s
to

re

In
tr

o
d
u
c
ti
o
n
 t

o
 s

ta
te

 o
b
s
e
rv

e
rs



Closed-loop model-based state estimation:              
mismatch on initial conditions

30

Effect of mismatch between ෝ𝒙0 and 𝒙0:

• 𝑅𝑘 = σ𝑅
2 1 0

0 1
, σ𝑅

2 = 1

• 𝑄𝑘 = σ𝑄
2 1 0

0 1
, σ𝑄

2 = 10−6

• Successful convergence of the

posterior error estimate to zero

• Noise completely filtered out!
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Closed-loop model-based state estimation:              
mismatch on initial conditions + input disturbance

31

Effect of mismatch between ෝ𝒙0 and 

𝒙0+ white noise input disturbance:

• 𝑅𝑘 = σ𝑅
2 1 0

0 1
, σ𝑅

2 = 1

• 𝑄𝑘 = σ𝑄
2 1 0

0 1
, σ𝑄

2 = 10−6

Mismatch on initial condition for the 

velocity:

• 𝒙0 =
𝑟0

𝑣0
=

0
0

, ෝ𝒙0 =
Ƹ𝑟0

ො𝑣0
=

0
1

• 𝑚 = 1, 𝐹𝑘 + 𝑑𝑘 = 0 + 3𝑁(0,1). 

• Noisy measurement on position:

     𝑦𝑟 = 𝑟𝑝𝑙𝑎𝑛𝑡 + 𝑁(0,1)
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Closed-loop model-based state estimation:              
mismatch on initial conditions + input disturbance

32

Effect of mismatch between ෝ𝒙0 and 

𝒙0+ white noise input disturbance:

• 𝑅𝑘 = σ𝑅
2 1 0

0 1
, σ𝑅

2 = 1

• 𝑄𝑘 = σ𝑄
2 1 0

0 1
, σ𝑄

2 = 10−6

• Very good tracking of the plant 

dynamics, even if affected by 

noises.

• Faster response enabled by 

tuning the values of 𝑅𝑘 and 𝑄𝑘.
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Plasma electron 
density 
reconstruction and 
control on TCV
• Motivation and applications

• RAPDENS model presentation

• Results on local density control 

33

▪ Swiss 
Plasma 
Center



TCV diagnostics for RT density measurement: 
FIR 

34

• Composed of 14 laser chords (λ = 184.3 μm) 

at different radial positions, 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 = 20 kHz.

• Phase delay of the 14 FIRs w.r.t. a reference 

laser outside the plasma:                        

∆𝜙𝑘
𝑐 = 𝑐𝐹𝐼𝑅 𝐿𝑐׬

𝑛𝑒(𝜌(𝑧), 𝑡𝑘 )𝑑𝑧

• ∆𝜙 can span different 2𝜋 radians, called 

fringes.

• Central chord used routinely used for density 

feedback
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TCV diagnostics for RT density measurement: 
FIR 

35

• Phase delay of the 14 FIRs w.r.t. a reference laser 

outside the plasma: ∆𝜙𝑘
𝑐 = 𝑐𝐹𝐼𝑅 𝐿𝑐׬

𝑛𝑒(𝜌(𝑧), 𝑡𝑘 )𝑑𝑧

• ∆𝜙 can span different 2𝜋 radians, called fringes.

• Various issues (high density plasmas and/or low 

SNR) lead to counting errors: fringe jumps.

• Integer errors of 2𝜋 lead to density errors of 

magnitude δ ≈ 1019 𝑚−2

FIR signal normalized and shifted:

T. C. Blanken et al., Fusion Engineering and Design 126, 

doi:10.1016/j.fusengdes.2017.11.006., 2018
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TCV diagnostics for RT density measurement: 
Thomson Scattering (TS)

36

• Main diagnostic for the estimation of the spatial 

profiles of 𝑛𝑒 and 𝑇𝑒 on TCV.

• Measurements at 117 positions along a vertical 

laser beam (R=0.9 m), covering also divertor 

region.

• Three lasers firing at a frequency of 20 Hz, 

independent fire mode:

• Equispaced in time: 60 Hz

• Burst-mode: interleave of 1 ms for three 

lasers, for fast phenomena in plasma core or 

SOL.

Lines of sight of

TS diagnostic
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TCV diagnostics for RT density measurement: 
Thomson Scattering (TS)

37

• Combining TS data with the 

real time equilibrium 

reconstruction enables to:

• Distinguish between core 

plasma and SOL density

• Provide detailed spatial 

info of density 
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Motivation: real-time estimation and control of ne 
profile 

38

• Real-time estimation of plasma electron density profile enables:

▪ Monitoring of plasma density limits in real time for disruption 

avoidance and integrated control [1].

▪ Local control of the density at ρ = ρ𝑡𝑎𝑟𝑔𝑒𝑡, e.g. on rational 

surfaces below cutoff for suppression of NTMs [2].

▪ Real-time Kinetic Equilibrium Reconstruction [3] for self-

consistent kinetic profiles + equilibrium.

[1] A. Pau et al., IAEA TM on Disruptions, Cadarache ITER, 2020.

[2] M. Kong et al., Plasma Phys. Control. Fusion 64 044008, doi: 10.1088/1361-6587/ac48be, 2022.

[3] F. Carpanese et al., Nucl. Fusion 60 066020, doi:10.1088/1741-4326/ab81ac, 2020.
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Motivation: real-time estimation and control of ne 
profile 

39

• Adoption of model-based observers:

▪ Merge different diagnostics for 

improved reconstruction of 𝑛𝑒.

▪ Decoupling between the diagnostics 

and the controllers.

▪ Avoiding propagation of diagnostic 

faults
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Motivation: real-time estimation and control of ne 
profile 

40

• Adoption of model-based observers:

▪ Merge different diagnostics for 

improved reconstruction of 𝑛𝑒.

▪ Decoupling between the diagnostics 

and the controllers.

▪ Avoiding propagation of diagnostic 

faults

Shot 83394:
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RAPDENS multirate ne profile observer 
(RT-FIR + RT-TS)

41

• Multirate electron density observer [9] at 1 kHz, based on Extended Kalman Filter algorithm.

• Inputs to the observer:

▪ RT-TS: 60 Hz.

▪ RT-FIR digitally filtered:
10 kHz.

▪ Plasma confinement state 
[10]  (L/H-mode), 1 kHz.

▪ Magnetic equilibrium
RT-LIUQE, 1 kHz.

• SAMONE actuator manager [11]

▪ PI density controller, 
feedback to gas valve.

[9]    F. Pastore et al., Fus.Eng.Des vol.192, p.113615, doi:10.1016/j.fusengdes.2023.113615, 2023.
[10] G. Marceca et al., 47th EPS Conference on Plasma Physics: virtual conference, June 21-25.
[11] N.M.T. Vu et al., IEEE Transactions On Nuclear Science 68, doi:10.1109/TNS.2021.3084410, 2021.

[11]
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RAPDENS multirate observer scheme 42
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Example: H-to-L back transition for a TCV shot

• Transient  H-mode plasma with strong off-axis ECCD + NBI-1.

• Back-transition of 𝑛𝑒 reconstructed in detail at 1 kHz.

43

SOL density non-negligible after 

back-transition
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Example: H-to-L back transition for a TCV shot

• Transient  H-mode plasma with strong off-axis ECCD + NBI-1.

• Back-transition from H-to-L reconstructed at 1 kHz.

44
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TS t=0.9843 s TS t=1.0003 s
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Example: H-to-L back transition for a TCV shot

• Estimated υ𝑇𝑆 exhibits stronger gradient at the edge, improving its reconstruction in the 

predictive step (black dashed profile).

• The EKF deployed algorithm relies on low 𝑅𝑘,𝑇𝑆 covariance, strong correction step (solid 

profile).

• 𝑛𝑒(ρ, 𝑡 = 1.001 𝑠) coherent with TS profile, degradation of the density gradient captured 

correctly.

• Profile shape propagated for the time t=1.002 s with only FIR data.
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Local density control for ECH discharges 46

• ECH directed in the plasma core, 

control of ne(rho=0) to ensure 

stable operation below cut-off 

(X2, 4e19 m^-3).

• Lack of the pump-out effect 

noticeable as ECH is turned off at 

t=1.50 s.

• Full absorption of ECH power 

achieved (post-shot TORAY).
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Summary and lessons learned 48

• Model-based observers provide a valuable contribution in the

reconstruction of the dynamical states.

• Many techniques can be adopted for the tuning of the observer

gains:

• Kalman Filter/ Extended Kalman Filter

• RAPDENS multirate observer integrated in TCV plasma control 

system, reconstruction comparable with post-shot TS.

• Local density control for ECH discharges, staying below cutoff

• Improved reliability of density control with fringe jumps filtering.

O
u
tl
o
o
k
 a

n
d
 c

o
n
c
lu

s
io

n

F
ra

n
c
e
s
c
o
 P

a
s
to

re



Summary and lessons learned 49

• Model-based observers provide a valuable contribution in the

reconstruction of the dynamical states.

• Many techniques can be adopted for the tuning of the observer

gains:

• Kalman Filter/ Extended Kalman Filter

• RAPDENS multirate observer integrated in TCV plasma control 

system, reconstruction comparable with post-shot TS.

• Local density control for ECH discharges, staying below cutoff

• Improved reliability of density control with fringe jumps filtering.
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THANKS FOR YOUR ATTENTION!

Questions?
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Concept of observability: derivation 52

Objective:

Compute 𝒙0 with: 

• a set of measurements {𝒚0, 𝒚1, … , 𝒚𝑘−1}
• a set of inputs {𝒖0, 𝒖1, … , 𝒖𝑘−1}
• knowledge of the system (𝐴, 𝐵, 𝐶, 𝐷)

Starting point: solution of the discrete state-

space representation of:

ቊ
𝒙𝑘+1 = 𝐴𝒙𝑘 +  𝐵𝒖𝑘

𝒚𝑘 = 𝐶𝒙𝑘 + 𝐷𝒖𝑘

𝒙1 = 𝐴𝒙0 +  𝐵𝒖0

𝒙2 = 𝐴𝒙1 +  𝐵𝒖1

𝒙2 = 𝐴[𝐴𝒙0+ 𝐵𝒖0] +  𝐵𝒖1

𝒙2 = 𝐴2𝒙0 +  𝐴𝐵𝒖0 +  𝐵𝒖1

…

𝒙𝑘 = 𝐴𝑘𝒙0 +  ෍

𝑖=0

𝑘−1

𝐴𝑘−1−𝑖𝐵𝒖𝑖

Closed solution of discrete difference 

equations:

𝒙𝑘 = 𝐴𝑘𝒙0 +  ෍

𝑖=0

𝑘−1

𝐴𝑘−1−𝑖𝐵𝒖𝑖

• Dependence on initial condition 𝒙0

• Inputs {𝒖0, 𝒖1, … , 𝒖𝑘−1}

Measurements equation applied to the 

closed solution:

𝒚𝑘 = 𝐶𝒙𝑘 +𝐷𝒖𝑘

𝒚𝑘 = 𝐶𝐴𝑘𝒙0 +  ෍

𝑖=0

𝑘−1

𝐶𝐴𝑘−1−𝑖𝐵𝒖𝑖 + 𝐷𝒖𝑘

Definition: modified measurement 𝒀𝑘:

𝒀𝑘 = 𝒚𝑘 − ෍

𝑖=0

𝑘−1

𝐶𝐴𝑘−1−𝑖𝐵𝒖𝑖 − 𝐷𝒖𝑘
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Concept of observability: derivation 53

• One ends up with the following relation:

𝒀𝑘 = 𝐶𝐴𝑘𝒙0 [1]

• 𝒙0 has 𝑛 elements, so one has to write 𝑛 

equations using [1].

• ൞

𝒀0 = 𝐶𝒙0

𝒀1 = 𝐶𝐴𝒙0…
𝒀𝑛−1 = 𝐶𝐴𝑛−1𝒙0

⇒

𝒀0
𝒀1…

𝒀𝑛−1

=

𝐶
𝐶𝐴
…

𝐶𝐴𝑛−1

𝒙0

Observability matrix:

if the 𝑟𝑎𝑛𝑘 𝒪 = 𝑛, we ensure 

uniqueness of the solution for 𝒙0.

q.e.d.

𝒪 =

𝐶
𝐶𝐴
…

𝐶𝐴𝑛−1
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Remark: Adding a number of equations to 𝒪 s.t. N > 𝑛 doesn’t change the rank of 𝒪.                

(Cayley–Hamilton theorem, 𝐴𝑚 = 𝛼0 𝐼 + 𝛼1𝐴 + 𝛼2𝐴2 + ⋯ + 𝛼𝑛−1𝐴𝑛−1, 𝑚 > 𝑛, size of matrix A: [𝑛, 𝑛] ). 



Observability: example of the 1D motion of a vehicle 54

Observability matrix:

𝑟𝑘+1

𝑣𝑘+1
=

1 ∆𝑡
0 1

𝑟𝑘

𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

𝒚𝑘 =
0 1
0 0

𝑟𝑘

𝑣𝑘
+

0
1/𝑚

𝐹𝑘

Discrete state-space representation, 
with sampling time ∆𝑡:

• Velocity (via GPS)

• Acceleration        

(via accelerometer)

𝒪 =
𝐶

𝐶𝐴
=

0 1
0
0
0

0
1
0

The system is not observable…

… this makes sense, since with velocity or

acceleration information one cannot reconstruct the

position initial condition.

Vice-versa, the position measurements are 

sufficient to reconstruct the position and velocity

states.

Conclusion:

• Well-thought design of the measuring system

(𝐶 matrix) enables the reconstruction of the state

𝒙𝑘.

• Many measurements can ensure redundancy in 

the state observation, in case of failure.

Let’s try to apply the previous concepts to design a 

closed-loop observer for the vehicle example.

𝒪 =
𝐶

𝐶𝐴
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55Kalman filter: example of the 1D motion of a vehicle
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Let’s adopt the Kalman filter to tackle the issues related with:

• The mismatching initial condition

• The disturbance in the input force

Tuning of the observer gains:

𝐿 =
𝐿1 𝐿2

𝐿3 𝐿4
𝐶 =

1 0
0 0

𝐿𝐶 =
𝐿1 0
𝐿3 0

Only the coefficients 𝐿1 and 𝐿3 play a role in modifying the poles of the

estimation equation response.

𝐹

𝑂 𝑟𝑘 𝑟𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝑟

𝑣𝑘 , 𝑎𝑘

𝑎𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
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RAPDENS code

• RAPDENS: Rapid Plasma DENsity Simulator

▪ Computation of 1D flux-surface averaged electron plasma density 

profile.

▪ Coupled with 0D time evolution of:

• Vacuum neutrals inventory.

• Wall neutrals inventory.

▪ Observer based on Extended Kalman Filter algorithm (EKF)

• Coded in Matlab/Simulink for RT application in Plasma Control Systems.

▪ First applications on TCV and AUG [4].

▪ Currently deployed on AUG for electron density reconstruction 

and control via gas valve and pellet-fuelling [5]

▪ ITER-based scenario controllers and simulations [6, 7]

▪ Integration and employment on TCV  [8,9],  integrating FIR and 

TS in the Kalman filter procedure. 
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[4] T. C. Blanken et al., Fusion Engineering and Design 126, doi:10.1016/j.fusengdes.2017.11.006., 2018.
[5] T. O.S.J. Bosman et al., Fusion Engineering and Design 170, doi:10.1016/j.fusengdes.2021.112510., 2021.
[6] T. Ravensbergen, Phd Thesis (Research TU/e / Graduation TU/e), Mechanical Engineering., 2021.
[7] T.O.S.J Bosman et al., J. Phys. Commun. vol.5, p.115015, doi:10.1088/2399-6528/ac3547, 2021.
[8] F. Pastore et al., "Integration of a multi-rate electron density profile observer in the plasma control system of TCV", 49th EPS, July 2023.
[9] F. Pastore et al., “Model-based electron density estimation using multiple diagnostics on TCV”, doi: 10.1016/j.fusengdes.2023.113615, 2023.

T. C. Blanken et al., Fusion Engineering and Design 126, 
doi:10.1016/j.fusengdes.2017.11.006., 2018.
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RAPDENS predictive model 57

• RAPDENS model equations

T. C. Blanken et al., Fusion Engineering and Design 
126, doi:10.1016/j.fusengdes.2017.11.006., 2018.

Diffusion coeff. Drift velocity

Sources/sinks of electrons:

𝑆 = 𝑆𝑖𝑧 − 𝑆𝑟𝑒𝑐 − 𝑆𝑆𝑂𝐿→𝑤𝑎𝑙𝑙 + 𝑆𝑁𝐵 + 𝑆𝑝𝑒𝑙𝑙𝑒𝑡𝑠 (4)

neutralsplasma

wall
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Local density control for ECH discharges 58

• Traditional control using central FIR chord #6?

• Comparison between: 

▪ FIR signal #6

▪ 𝑛𝑒(ρ=0) rescaled (at t=0.20 s)

• Lack of proportionality in the ECH 

phase, due to:

▪ profile flattening

▪ pick-up of density in the SOL

ohmic

ECH
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59Luenberger observer: example of the 1D motion of
a vehicle
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Let’s adopt the Luenberger observer to tackle the issues related with:

• The mismatching initial condition

Tuning of the observer gains:

𝐿 =
𝐿1 𝐿2

𝐿3 𝐿4
𝐶 =

1 0
0 0

𝐿𝐶 =
𝐿1 0
𝐿3 0

Only the coefficients 𝐿1 and 𝐿3 play a role in modifying the poles of the

estimation equation response.

𝐹

𝑂 𝑥𝑘 𝑥𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
x

𝑣𝑘 , 𝑎𝑘

𝑎𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
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60Luenberger observer: example of the 1D motion of
a vehicle
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Let’s study the impact of 𝐿1 and 𝐿3 on the eigenvalues of 𝐴 − 𝐿𝐶:

λ1,2 =
(2−𝐿1)±𝐿1 1−4𝐿3/𝐿1

2

2

𝐿1 = 0.01
𝐿3 = 0.02 𝑠−1

λ1 = 0.9928 𝑠−1

λ2 = 0.9972 𝑠−1

𝐹

𝑂 𝑥𝑘 𝑥𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
x

𝑣𝑘 , 𝑎𝑘

𝑎𝑘,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝝀1,2 = 𝑒𝑖𝑔 𝐴 = [1,1]

Unstable open loop system

xx x
System stabilized!
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Closed-loop model-based state estimation:              
mismatch on initial conditions

61

Effect of mismatch between ෝ𝒙0 and 𝒙0:

Mismatch on initial condition for the 

velocity:

• 𝒙0 =
𝑟0

𝑣0
=

0
0

, ෝ𝒙0 =
Ƹ𝑟0

ො𝑣0
=

0
1

• 𝑚 = 1, 𝐹𝑘 = 1 ∙ 𝑠𝑡𝑒𝑝(𝑡). 

• Introduction of noisy 

measurement on position:

     𝑦𝑟 = 𝑟𝑝𝑙𝑎𝑛𝑡 + 𝑁(0,1)

• Let’s start with zero gain to the 

observer matrix…

• Exactly same behavior 

recovered, Observer behaves as 

the open loop Model
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Closed-loop model-based state estimation:              
mismatch on initial conditions

62

Effect of mismatch between ෝ𝒙0 and 𝒙0:

Mismatch on initial condition for the 

velocity:

• 𝒙0 =
𝑟0

𝑣0
=

0
0

, ෝ𝒙0 =
Ƹ𝑟0

ො𝑣0
=

0
1

• 𝑚 = 1, 𝐹𝑘 = 1 ∙ 𝑠𝑡𝑒𝑝(𝑡). 

• Introduction of noisy 

measurement on position:

     𝑦𝑟 = 𝑟𝑝𝑙𝑎𝑛𝑡 + 𝑁(0,1)

• Selection of the Observer gains:

 𝐿1 = 0.01
 𝐿3 = 0.02 𝑠−1
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Closed-loop model-based state estimation:              
mismatch on initial conditions

63

Effect of mismatch between ෝ𝒙0 and 𝒙0:

• The observer effectively brings

the estimation error 𝒆𝑘 to zero!

• It also effectively filter

measurement noise in the

estimation of the position 𝑟.
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Closed-loop model-based state estimation 64

𝐹𝑘

𝒚𝑘𝑟𝑘+1

𝑣𝑘+1
=

1 ∆𝑡
0 1

𝑟𝑘

𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘

𝒚𝑘 =
1 0
0 0

𝑟𝑘

𝑣𝑘
+

0
1/𝑚

𝐹𝑘

Vehicle

Ƹ𝑟𝑘+1

ො𝑣𝑘+1
=

1 ∆𝑡
0 1

Ƹ𝑟𝑘

ො𝑣𝑘
+

∆𝑡2/2𝑚
∆𝑡/𝑚

𝐹𝑘 +
𝐿1 𝐿2

𝐿3 𝐿4
ො𝒛𝑘

ෝ𝒚𝑘 =
1 0
0 0

𝑟𝑘

𝑣𝑘
+

0
1/𝑚

𝐹𝑘

Observer

𝐿

Observer gains

ෝ𝒙𝑘

ෝ𝒚𝑘

+

-

+

+

ො𝒛𝑘

Innovation residual

ෝ𝒙0
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State space representation of RAPDENS model 65

▪ Space discret.: cubic B-splines with

finite support

▪ FEM weak formulation

▪ Time discret.: trapezoidal method

Limited/

diverted

L/H mode Geom. 

quantities

Discrete state space representation 

of the predictive model
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▪ Definition of the augmented state-space representation:

Observer for electron density reconstruction
R

A
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Predictive model𝒙𝑘+1|𝑘 = 𝒇𝑑 𝒙𝑘|𝑘 , 𝒑𝑘 + BϚϚ𝑘 + B𝑑𝒖𝑘 + 𝒘𝑘
𝑥

Ϛ𝑘+1|𝑘 = Ϛ𝑘|𝑘 + 𝒘𝑘
Ϛ

𝑦𝑘 = 𝐶(𝑝𝑘)𝒙𝑘+1|𝑘 + 𝒗𝑘

 



▪ Definition of the augmented state-space representation:
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𝒙𝑘+1|𝑘 = 𝒇𝑑 𝒙𝑘|𝑘 , 𝒑𝑘 + BϚϚ𝑘 + B𝑑𝒖𝑘 + 𝒘𝑘
𝑥

Ϛ𝑘+1|𝑘 = Ϛ𝑘|𝑘 + 𝒘𝑘
Ϛ

𝑦𝑘 = 𝐶(𝑝𝑘)𝒙𝑘+1|𝑘 + 𝒗𝑘

 

Disturbances:

Actuators and/or modeling errors.

It acts as an integral term, 

compensating for offsets 



▪ Definition of the augmented state-space representation:
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𝒙𝑘+1|𝑘 = 𝒇𝑑 𝒙𝑘|𝑘 , 𝒑𝑘 + BϚϚ𝑘 + B𝑑𝒖𝑘 + 𝒘𝑘
𝑥

Ϛ𝑘+1|𝑘 = Ϛ𝑘|𝑘 + 𝒘𝑘
Ϛ

𝑦𝑘 = 𝐶(𝑝𝑘)𝒙𝑘+1|𝑘 + 𝒗𝑘

 

Measurements

equation



▪ Zero-mean white noise added to prediction and measurement equation:

Observer for electron density reconstruction
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𝒙𝑘+1|𝑘 = 𝒇𝑑 𝒙𝑘|𝑘 , 𝒑𝑘 + BϚϚ𝑘 + B𝑑𝒖𝑘 + 𝒘𝑘
𝑥

Ϛ𝑘+1|𝑘 = Ϛ𝑘|𝑘 + 𝒘𝑘
Ϛ

𝑦𝑘 = 𝐶(𝑝𝑘)𝒙𝑘+1|𝑘 + 𝒗𝑘

 

Stochastic process modeling

State process

covariance matrix

𝑄𝑘

Measurements noise 

covariance matrix

𝑅𝑘



▪ Predictive step:

▪ Correction step:

Estimation of the augmented state via EKF
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Where 𝐿𝑘 is the Extended Kalman Filter gain

ෝ𝒙𝑘+1|𝑘 =
𝒇𝑑 𝒙𝑘|𝑘 , 𝒑𝑘 + BϚϚ𝑘|𝑘

෠Ϛ𝑘|𝑘

+ 𝐺𝒖𝑘 𝐺 =
𝐵𝑑

0

ෝ𝒙𝑘+1|𝑘+1 = ෝ𝒙𝑘+1|𝑘 + 𝐿𝑘𝑧𝑘
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• Linearized dynamics for the state

equation:

• Covariance matrix for the prediction

error of augmented state Ε((x−)):

• Innovation residual covariance matrix:

Extended Kalman filter gain:

• Covariance matrix for the posterior error of

augmented state:

𝑃𝑘+1|𝑘 = 𝐹𝑘𝑃𝑘|𝑘𝐹𝑘
𝑇 + 𝑄k 𝑃𝑘+1|𝑘+1 = 𝐼 − 𝐿𝑘𝐻𝑘 𝑃𝑘+1|𝑘

𝑆𝑘 = 𝑅𝑘 + 𝐻𝑘𝑃𝑘+1|𝑘𝐻𝑘
𝑇

𝐿𝑘 = 𝑃𝑘+1|𝑘𝐻𝑘
𝑇𝑆𝑘

−1
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faults detect 

and correct

+
-
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෠ℎ𝐹𝐼𝑅 
𝑘|𝑘 − 1

෠ℎ𝑇𝑆 
𝑘|𝑘 − 1

ℎ𝑘 = ℎ𝐹𝐼𝑅,𝑘 

𝑧𝑘
1

𝑧𝑘,𝑐𝑜𝑟𝑟

𝑜𝑘_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑘

ν𝑇𝑆,𝑘

TS available?

TS available?

ҧ𝑥𝑘|𝑘

𝑧−1

ො𝑥𝑘−1|𝑘−1

ො𝑥𝑘|𝑘

+
+

തℎ𝐹𝐼𝑅,𝑘|𝑘 𝐻𝐹𝐼𝑅,𝑘

+

-
δതℎ𝐹𝐼𝑅,𝑘

෠ℎ𝑘|𝑘−1

Thomson 

Scattering

Post-

processing

ℎ𝑘 =
ℎ𝐹𝐼𝑅,𝑘 

ℎ𝑇𝑆,𝑘 

FIR (digitally filtered) 

▪ Gas valve

▪ Pellets

▪ NBI

𝑛𝑒,𝑘(ρ𝑘)

RT-LIUQE

Density 

Predictive Model

𝑢𝑘

𝐺0,𝑘 ρ𝑘 , 𝐺1,𝑘 ρ𝑘  

𝑉𝑝,𝑘 ρ𝑘  , 𝐼𝑝,𝑘 , 𝑐𝑙𝑑,𝑘

LDH state 

detector

𝑐𝑙ℎ,𝑘

ො𝑥𝑘|𝑘−1

▪ Gas valve

▪ Pellets

▪ NBI

Prediction step:

• Gas valve fuelling 𝑢𝑘 from valve controller readback.

• Confinement state L/H-mode boolean 𝑐𝑙ℎ

▪ Transport coefficient 𝐷𝑙/ℎ

▪ Penetration depth of neutrals λ𝑖𝑧,𝑙/ℎ(ionization process)

• Magnetic plasma equilibrium from RT-LIUQE:

▪ Geometrical quantities 𝐺0 = |∇ρ| and 𝐺1 = |∇ρ|2

▪ Plasma volume 𝑉𝑝,𝑘 and current 𝐼𝑝,𝑘

• υ𝑇𝑆,𝑘 estimated from last RT-TS profile

• Previous time step state  ො𝑥𝑘−1|𝑘−1

Output from prediction step:

Predicted state ො𝑥𝑘|𝑘−1

ො𝑥𝑘−1|𝑘−1
ν𝑇𝑆,𝑘

TS 

available?
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𝑜𝑘_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑘

ν𝑇𝑆,𝑘

TS available?

TS available?

ҧ𝑥𝑘|𝑘

𝑧−1

ො𝑥𝑘−1|𝑘−1

ො𝑥𝑘|𝑘

+
+
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processing
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FIR (digitally filtered) 

▪ Gas valve

▪ Pellets

▪ NBI

𝑛𝑒,𝑘(ρ𝑘)

RAPDENS observer scheme

Diagnostics

     Model

𝐻𝐹𝐼𝑅,𝑘

𝐻𝑇𝑆,𝑘

ψ𝑘 𝑅, 𝑍
Φ,𝑘 ψ𝑘 , 𝐷𝑜𝑚𝑎𝑖𝑛𝑝,𝑘

+
-

෠ℎ𝐹𝐼𝑅 
𝑘|𝑘 − 1

𝑘|𝑘 − 1

෠ℎ𝑇𝑆 

𝑧𝑘
1

TS available?

෠ℎ𝑘|𝑘−1

Thomson 

Scattering
FIR (digitally filtered) 

RT- diagnostics

ො𝑥𝑘|𝑘−1

ℎ𝑘 = ℎ𝐹𝐼𝑅,𝑘 ℎ𝑘 =
ℎ𝐹𝐼𝑅,𝑘 

ℎ𝑇𝑆,𝑘 

RT-LIUQE

෠ℎ𝐹𝐼𝑅 
𝑘|𝑘 − 1

෠ℎ𝑇𝑆 
𝑘|𝑘 − 1

Synthetic measurement step:

• Assembly of the diagnostic model 𝐻𝑘

using RT-LIUQE info:

• Plasma domain

• Poloidal + toroidal flux

• 𝐻𝑘 maps linearly the 𝑛𝑒 profile coming
from the predictive step ො𝑥𝑘|𝑘−1 to provide
synth. measurements ෠ℎ𝑘|𝑘−1.

•
෠ℎ𝑘|𝑘−1 =

𝐻𝑘,𝐹𝐼𝑅

𝐻𝑘,𝑇𝑆
ො𝑥𝑘|𝑘−1

෠ℎ𝑘|𝑘−1 = 𝐻𝑘,𝐹𝐼𝑅 ො𝑥𝑘|𝑘−1

• Innovation residual is computed:         𝑧𝑘

= ෠ℎ𝑘|𝑘−1 − ℎ𝑘

if TS available

else
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Thomson 

Scattering
FIR (digitally filtered) 

RT- diagnostics
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𝐺0,𝑘 ρ𝑘 , 𝐺1,𝑘 ρ𝑘  
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𝑧𝑘
1

𝑧𝑘,𝑐𝑜𝑟𝑟

𝑜𝑘_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑘

ν𝑇𝑆,𝑘

TS available?

TS available?

ҧ𝑥𝑘|𝑘

𝑧−1

ො𝑥𝑘−1|𝑘−1

ො𝑥𝑘|𝑘

+
+

തℎ𝐹𝐼𝑅,𝑘|𝑘 𝐻𝐹𝐼𝑅,𝑘

+

-
δതℎ𝐹𝐼𝑅,𝑘

෠ℎ𝑘|𝑘−1

Thomson 

Scattering

Post-

processing

ℎ𝑘 =
ℎ𝐹𝐼𝑅,𝑘 

ℎ𝑇𝑆,𝑘 

FIR (digitally filtered) 

▪ Gas valve

▪ Pellets

▪ NBI

𝑛𝑒,𝑘(ρ𝑘)

𝑧𝑘
1

Detection of diagnostic faults and its
correction:

• Innovation residual can be used to isolate
diagnostic faults (e.g. fringe jumps)

• Model-based prediction doesn’t exibit
step-wise variation of line-integrated
density of 1019𝑚−2 in 1 ms.                     

• 𝑧𝑘,𝑐𝑜𝑟𝑟 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑎𝑙𝑔𝑜(𝑧𝑘)

• Corrupted channels are flagged and 
suppressed for the upcoming correction
step.

Diagnostic 

faults detect 

and correct

𝑧𝑘,𝑐𝑜𝑟𝑟

𝑜𝑘_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑘
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Correction step:

• The predicted state is corrected with info from diagnostics:
ො𝑥𝑘|𝑘 = ො𝑥𝑘|𝑘−1 + 𝐿𝑘𝑧𝑘,𝑐𝑜𝑟𝑟(𝑜𝑘𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑘

)

• Covariance matrices associated with measurements 𝑅𝑘 and 
model 𝑄𝑘 tune the weight of the Kalman gain.

• Possibility to:

▪ trust more the model w.r.t. measurements
(in case of noisy/faulty diagnostic signals) 

▪ trust more the model w.r.t. measurements
(lack of accuracy of the model). 

Postprocessing:

Computation of 𝑛𝑒,𝑘(ρ𝑘) and line-averaged density 𝑁𝐸𝐿𝐿𝐶𝐹𝑆ν𝑇𝑆,𝑘

TS 

available?

ො𝑥𝑘|𝑘−1

Kalman Gain 

Matrix 𝐿𝑘

𝑧𝑘,𝑐𝑜𝑟𝑟

𝑜𝑘_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠𝑘

TS 

available?

ො𝑥𝑘|𝑘

+
+

Post-

processing

𝑛𝑒,𝑘(ρ𝑘)
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Correction step (if RT-TS is available):

• Computation of transport coefficient ν𝑇𝑆,𝑘 :                          
(steady state approx. + 𝑆 = 0)

ν𝑇𝑆,𝑘 = −𝐷
𝐺1

𝐺0

1

𝑛𝑒

𝜕𝑛𝑒

𝜕ρ

• ν𝑇𝑆,𝑘 adopted by the Density Predictive Model and      updated at 
60 Hz with new RT-TS data.

• Offsets/fringe jumps FIR correction:

▪ FIR synth. from TS fitted profile: ഥℎ𝐹𝐼𝑅,𝑘|𝑘 = 𝐻𝐹𝐼𝑅,𝑘 ҧ𝑥𝑘|𝑘

▪ δതℎ𝐹𝐼𝑅,𝑘 = ℎ𝐹𝐼𝑅,𝑘 − ഥℎ𝐹𝐼𝑅,𝑘|𝑘 applied in Diagnostic faults
detect and correct step.

▪ offset applied to upcoming FIR data, updated at 
60 Hz with new RT-TS data. ν𝑇𝑆,𝑘
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F. Pesamosca “Model-based optimization of magnetic

control in the TCV tokamak: design and experiments.” 

PhD thesis at EPFL Lausanne, Apr. 2021, p. 29

Tokamak à configuration variable - TCV 77

▪ Medium-sized tokamak, 𝑅 =  0.88 𝑚, 𝐵𝑡 ≤ 1.54 𝑇, a ≈  0.25 𝑚.

▪ Unique shaping capabilities with 16 independent poloidal field 

coils+ highly elongated vacuum vessel.

▪ Exploration of different magnetic configurations for:

• Alternative divertor concepts

• Negative triangularity plasmas

• Double nulls, doublets...



TCV heating system - NBI 78

▪ Possibility to heat the plasma with two NBI systems:

▪ Opposite directions to control plasma rotation.

▪ NBI-1: 𝑃𝑚𝑎𝑥 = 1.32 𝑀𝑊, 28 keV in deuterium.

▪ NBI-2: 𝑃𝑚𝑎𝑥 = 1.12 𝑀𝑊, 50 keV in deuterium.

▪ Feedback controlled for e.g. beta control

▪ DNBI to provide with CXRS system:

▪ Carbon temperature & density

▪ Plasma rotation

𝐼𝑃 > 0

A. Karpushov et al., “Upgrade of the neutral beam heating system 

on the TCV tokamak – second high energy neutral beam .” FED, 

187 (2023) 113384 

doi: https://doi.org/10.1016/j.fusengdes.2022.113384 



TCV heating system – ECH & ECCD 79

F. Pesamosca “Model-based optimization of magnetic

control in the TCV tokamak: design and experiments.” 

PhD thesis at EPFL Lausanne, Apr. 2021, p. 29

▪ Microwave heating for ECRH and ECCD with:

▪ 1 Gyrotron in X2 (82.7 GHz), 𝑃𝑚𝑎𝑥 = 600 𝑘𝑊.
▪ 2 Gyrotrons in X3 (126 GHz), 𝑃𝑚𝑎𝑥 = 900 𝑘𝑊.
▪ 2 Gyrotrons dual X2-X3 (82.7 GHz -118 GHz) , 

𝑃𝑚𝑎𝑥= 1800 𝑘𝑊.

▪ Upper and equatorial launchers for X2,                       

RT compatible steering mirrors (preemption & 

suppression of NTMs).
▪ Vertical launcher for X3.



Local density control for ECH + NBIs discharges 80



Local density control for ECH + NBIs discharges 81

• RAPDENS time-averaged profiles on different phases of 

the discharges 82913 and 82893

ohmic

ECH

NB 1 + 2

ohmic
ECH +NB 1

ohmic
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